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Abstract

Looking back on the development of computer technology, particularly in the context of 
manufacturing, we can distinguish three big waves of technological exuberance with a 
wave length of roughly 30 years: In the first wave, during the 1950es, mainframe 
computers at that time were conceptualized as »electronic brains« and envisaged as central 
control unit of an »automatic factory« (Wiener). Thirty years later, during the 1980es, 
knowledge-based systems in computer-integrated manufacturing (CIM) were adored as 
the computational core of the »unmanned factory«. Both waves dismally stranded on the 
contumacies of reality. Nevertheless, again thirty years later, we now experience the 
departure of the »smart factory« based on networks of »artificially intelligent« multi-agent 
or »cyber-physical systems« (often also addressed as »internet of things«).
From the very beginning, these technological exuberances rooted in mistaken metaphors 
describing the artifacts (e.g. »electronic brain«, »knowledge-based« or »intelligent 
systems«) and, hence, in delusions about the true nature of computer systems. The 
behaviour of computers is, as computing science teaches us, strictly restrained to executing 
computable functions by means of algorithms, it thus neither resembles the performance 
of a brain as part of a complex sensitive living body nor is it in any meaningful sense 
»knowledgeable« or »intelligent« (this predicate remaining reserved for the programmer 
designing the algorithms). When the delusion of being able to implement »smart 
factories«, despite the countless accomplishment failures before, gains momentum anew, it 
appears absolutely essential to reflect on underlying misconceptions.
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1 Introduction: Dreaming of the Automatic Factory

With the ubiquitous proclamation of »industry 4.0« and »big data« as core of a new »in-
dustrial revolution«, we experience another wave of technological exuberance propagating 
advanced computer technology as a panacea for all sorts of societal problems from poor 
resource efficiency to demographic imbalances. Hardly any trouble appears big enough 
not to be overcome by »digitization«. Against the background of knowledge-intensive va-
lue creation, continuously weak growth and decreasing productivity growth, the World 
Economic Forum reminds in a report, to undertake major efforts specifically for gaining 
higher competitiveness in manufacturing and services by improving performance and 
control over globally dispersed value adding chains by means of the »digital transformati-
on« – seemingly the original document of the movement (WEF 2012). 

In accord with these widely shared ideas, highly developed and industrialized countries 
adopted more or less effective measures for their advancement; particularly, Germany 
with its strong industry base launched a framework programme for the advancement of 
»innovation in manufacturing and services« as central part of their »high tech« develop-
ment strategy. Production components such as »intelligent« machines, work pieces, and 
storage systems are envisaged to form globally networked »multi-agent« or »cyber-physi-
cal systems« (CPS). Enabled by advanced computer technology, these systems can automa-
tically exchange data and mutually initiate actions between the components in »decentra-
lized self-organisation« and, thus, accomplish »smart factories and services«, sufficiently 
adaptive and dynamic for economically producing individual customer orders, handling 
disturbances and failures, and optimal decision making (BMBF 2014).

More generally, in their new book Brynjolfsson and McAfee (2014) describe the advent of a 
»second machine age« and how the new digital revolution changes the world. Referring to 
the extraordinary exponential growth of computer performance and storage capacity in 
digital networks (according to Moore’s law), with rapid progress in accomplishing »artifi-
cial intelligence« and »big data« applications, they illuminate the potential for »digital« 
value creation. For explanation, they refer to Google’s the self-driving car and IBM’s Wat-
son with respect to knowledge processing capacities. In critical perspective, they also ad-
dress, however, the risks of monopolizing digital value creation due to network effects 
(»the winner takes it all«), look at expanding inequalities and polarities of skills and inco-
me, and discuss opportunities for controlling future developments. 



This in many respects evokes memories of earlier attempts to make come true manage-
ment’s old dream of an automatic factory, of eternal unmanned »value creation« by means 
of computer and sensor technology, the dream of finally becoming independent of the ob-
stinacy and contumacy of living labour. As early as 1950, when the first commercial main-
frame computers had just been installed, Norbert Wiener (1950) already had a clear and 
detailed vision how to achieve an automatic factory by means of sensors, effectors and 
computing machines as central logical units for controlling its complex processes. And 
thirty years later, during the 1980es, the central idea of the »unmanned factory« directed 
high development efforts into »knowledge-based« (i.e. equipped with symbolic »artificial 
intelligence«) and computer-integrated manufacturing (CIM) systems (Brödner 1990, Hunt 
1989). These tidal waves of technological exuberance, arriving with a length of roughly 30 
years, each time dismally stranded at the cliffs of unruly matter and underestimated im-
plementation problems with ensuing long phases of disillusionment when trying to over-
come those difficulties. Ironically, in each of these sobering phases, the value of implicit 
knowledge, of intuition and creativity, of specifically human acting skills was rediscover-
ed.

The paper wants to realistically assess the similarities and differences of the new promises 
of the »second machine age«, particularly »industry 4.0« and »big data«, relative to pre-
vious attempts. To this end, the paper starts with presenting the scientific and technical 
foundations of the various attempts to accomplish an automatic factory until present in 
some more detail. By comparing the attempts, the novelty of the most recent approach can 
be determined. Based on that, a critical evaluation of the opportunity and risk potentials 
can be made. Finally, realistic design perspectives for forward looking manufacturing and 
service systems will be derived. 

2 Revenant Symptoms: The Third Wave

2.1 Previous attempts of creating an »unmanned factory«

Looking back on the development of computer technology, particularly in the context of 
manufacturing, we can distinguish three big waves of technological exuberance with a 
wave length of roughly 30 years: In the first wave, during the 1950es, mainframe compu-
ters at that time were conceptualized as »electronic brains« and envisaged as central con-
trol unit of an »automatic factory«:

»The computing machine represents the center of the factory, but it will never be the whole fac-
tory. On one hand, it receives its detailed instructions from elements of the nature of sense or-
gans. […] Besides these sense organs, the control system must contain effectors or components 
which act on the outer world.  
Of course, we assume that the instruments which act as sense organs record not only the origi-
nal state of the work, but also the result of all previous processes. Thus the machine may carry 
out feedback operations, either those of the simple type now so thoroughly understood, or tho-
se involving more complicated processes of discrimination, regulated by the central control as a 
logical or mathematical system. In other words, the all-over system will correspond to the com-
plete animal with sense organs, effectors, and proprioceptors, and not, as in the ultra-rapid 
computing machine, to an isolated brain, dependent for its experiences and for its effectiveness 
on our intervention« (Wiener 1950, 156f).



Despite the persuasive power of Wiener’s clearly outlined vision of the automatic factory, 
computers did not penetrate manufacturing to a considerable degree until the mid 1970es. 
There were of course, some cases of early investment in, for instance, numerically control-
led machine tools and computerized management of a firm’s material (and money) flows 
as well as R&D activities in computer-aided design (all being areas with already highly 
standardized operations and procedures). However, difficulties in getting access to isola-
ted mainframe computers prevented wide-spread use. With the advent of »virtual machi-
ne« operating systems (IBM 360/370, DEC PDP 10/11) providing computer access via lo-
cally dispersed terminals, the use of computing power in manufacturing gained con-
siderable momentum. Far from implementing fully automated operations , however, com-
puting machinery was rather used in a more or less interactive mode combining compu-
ting functions with skilled human expert work.

Meanwhile, during the high time of Taylorism with its separation of planning from opera-
ting, huge amounts of explicit propositional knowledge about optimal operating conditi-
ons and procedures in manufacturing had been collected. Additionally, it turned out that, 
with rapidly expanding computer programs in many manufacturing areas (NC machines, 
computer-aided production planning and control, computer-aided design, cost accoun-
ting), many of these programs used the same data. In order to avoid error-prone multiple 
data entries, the idea arose to integrate the many programs and software components so 
far used in isolation into »computer-integrated manufacturing« systems (CIM) by means 
of a common data base. Moreover, as at the same time market forces and competition 
changed their nature from standardized mass to flexible quality production, and against 
the background of a wealth of explicit manufacturing knowledge at hand, the integration 
idea was combined with efforts to develop symbolic artificial intelligence using this know-
ledge for automatically handling the complex and dynamic, steadily changing operating 
procedures. The intention was to widely replace skilled shop-floor and knowledge 
workers by »knowledge-based systems«. »Experts leave, while expert systems remain« 
was a common slogan at the time. This is how thirty years after Wiener’s vision, during 
the 1980es, »knowledge-based« and »expert systems« in computer-integrated manufactu-
ring were promoted as guiding ideas and computational core of the newly envisaged 
»unmanned factory« (for more details cf. Brödner 1990, 2007, Hunt 1989). 



Both waves were fueled by a technology-centred perspective which culpably ignored es-
sential conditions for successful performance of manufacturing processes. In particular, it 
disregarded deep societal changes such as the transition from industrial to knowledge-ba-
sed economies and, hence, the relevance of social relationships and the division of labour 
and knowledge for efficient value creation. As knowledge work is becoming a dominant 
factor in manufacturing and services (Bell 1973, Drucker 1994), it is important to get a clear 
understanding of the fundamental differences between implicit practical competence and 
explicit conceptual or propositional knowledge and how they interplay with each other 
(for basic differences cf. Nonaka 1996, Polanyi 1966, Ryle 1949). While the individually 
embodied action competence as pre-reflexive implicit knowledge or working capacity is 
always antecedent and expresses itself in activities of successful social practice, explicit 
propositional knowledge about certain aspects of this practice can only be gained through 
observation, concept formation and analysis. However, this codified knowledge needs to 
be made effective again by appropriating it for practical use (this also holds for technical 
artifacts derived from this knowledge). Both, explicating propositional knowledge about 
competences and appropriating it for practical use, are skillful activities expressing the 
working capacity which for his part is augmented through these activities. Ironically and 
contrary to common expectations, these dynamic relationships have just precisely been il-
luminated by the difficulties of »knowledge elicitation« for building expert systems (Bröd-
ner 2013).

Consequently, both waves dismally stranded on the contumacies of reality. In fact, the ef-
forts to build knowledge-based integrated manufacturing systems ended in a complete 
reversal: Confronted with examples of real high performance manufacturing systems, it 
became obvious that these systems, contrary to common belief, produced their high effici-
ency not primarily by means of advanced computer technology, but rather through skillful 
cooperation between human experts in multifunctional teams such as cellular group work 
or simultaneous engineering teams. Exactly this could also be concluded from theoretical 
insight in the dynamic relationship between the – always partial – explication of practical 
experience and action competence into codified knowledge and the appropriation of this 
knowledge for practical problem solving. The latter typically requires expertise and know-
ledge from diverse domains to be consolidated and integrated through the self-organized 
cooperation of experts. The more differentiated, complex, and dynamic the codified know-
ledge is – and its objectification in technical artifacts –, the more demanding competence 
and working capacity are required to seize hold of these productive forces for effective 
practical use. This is subject to the experts’ autonomy and cannot be planned and instruc-
ted.



Both waves were also accompanied by apocalyptical predictions of lasting technological 
unemployment. As the shop-floor worker before, now also the knowledge worker would 
be replaced to a substantial degree by computing machinery. Electronic data processing 
was generally denounced as severe »job killer«. Nothing of this really happened, though; 
instead, a productivity paradox could be observed with computer use: »You can see the 
the computer age everywhere, but in productivity statistics« (Solow 1987). Although the 
rapidly expanding use of computers in manufacturing and services, growing both in vo-
lume and diversity of applications, caused massive changes in professions, specific skills, 
and qualifications, the macroeconomic productivity effect was minimal. In fact, we experi-
ence, since a number of years, a secular downturn in macroeconomic productivity growth 
rates (Gordon 2014). On firm level, however, huge differences in performance between 
firms operating under comparable market conditions and with similar software ap-
plications in use could be observed. Two decades of empirical research efforts investiga-
ting these effects finally came, in accord with theoretical view above, to the conclusion:

»To leverage information technology investments successfully, firms must typically make large 
complementary investments and innovations in areas such as business organization, workplace 
practices, human capital, and intangible capital.« (Jorgenson et al. 2008, 10; similarly also Ded-
rick et al. 2003).

 
2.2 The new machinists’ claims

Notwithstanding these rather sobering experiences, we now see, again thirty years later, 
the departure of a »smart factory« based on networks of »artificially intelligent« multi-
agent or »cyber-physical systems« (CPS; often also addressed as »internet of things«). With 
the striking designations »industry 4.0« or »second machine age«, respectively, this is in-
tended to mark another qualitative leap in industrial development. With its focus on ad-
vances in computer technology, it again indicates a new wave of technocentrism and tech-
nological exuberance. So it is worth while to throw a closer look on the scientific and tech-
nological foundations.

Embedded systems are computer components for digital control of physical processes which 
are equipped with interfaces to humans and other components. By data exchange via the 
internet, they can be globally networked (cyber-physical systems«, »internet of things and 
services« (cf. fig. 1).

 



Fig. 1: Embedded system (according to Broy)  

Multi-agent systems (MAS, also called »distributed artificial intelligence«) consist of soft-
ware-agents with limited autonomy for goal-oriented interaction by data transfer; such 
concerted action enables them to jointly master demanding tasks. 

For a deeper understanding, a closer look on the behaviour of these systems, their mode of 
operation and the way they are described is required. The extraordinary interest in MAS 
goes back to the idea that coordinated action of a large number of units with relative sim-
ple behaviour would produce »artificial intelligence« (Minsky 1988). It is based on the ex-
plicitly articulated conviction that »interaction is more powerful than algorithms« (Wegner 
1997). This has, however, immediately been proven wrong, as MAS also underly the cons-
traints of computability (Prasse & Rittgen 1998). As a matter of fact, however, the beha-
viour of MAS as wholes does show emergent properties that cannot be observed with any 
single software-agent.

Agents are software engineering objects capable of taking in sensor data from the envi-
ronment as well as from other agents, of independently processing the data by means of 
their own algorithms – mostly »machine learning« algorithms –, and of putting out resul-
ting data. The behaviour is characterized by the capacity to follow goals and to adapt to 
changing conditions by »machine learning« (Breadshaw 1997, Maes 1994). In order to cope 
with more demanding tasks, the agents with limited autonomy each can thus cooperate 
for achieving the tasks by concerted action (Wooldridge 2002). Simultaneously, huge 
amounts of data are being generated which can be used separately.

Although each agent by itself performs relatively simple algorithms and shows transpa-
rent behaviour, the MAS as a whole owns a highly complex behaviour which cannot be 
analysed and understood from outside any more, although it still is strictly determined by 
algorithms. Formally, CPS and MAS can be described as so called »non-trivial 
machines« (Foerster 1991) whose output data are not only determined by its input data, 
but also by its variable internal state that is itself a function of input data. The internal sta-
te reflects the various ways in which the agents interact and adapt their behaviour (cf. fig. 
2). Consequently, the MAS behaviour highly depends on the history and cannot be analy-
tically determined from outside and, hence, foreseen any more.



 

Fig. 2: MAS as non-trivial machine

 
Besides this physical and algorithmic description of the MAS behaviour, another type of 
description is also commonly used which orients itself at the agents’ purposive interac-
tions according to the so called »intentional stance« (Dennett 1987). In this stance, inten-
tional states like convictions, beliefs, desires or intentions are ascribed to agents expressi-
vely in order to simplify the description of the agents’ behaviour. This common practice 
among MAS researchers refers to a report by McCarthy (1979):

»To ascribe beliefs, free will, intentions, consciousness, abilities, or wants to a machine is legiti-
mate when such an ascription expresses the same information about the machine that it expres-
ses about a person. It is useful when the ascription helps us understand the structure of the ma-
chine, its past or future behaviour, or how to repair or improve it. It is perhaps never logically 
required even for humans, but expressing reasonably briefly what is actually known about the 
state of the machine in a particular situation may require mental qualities or qualities isomor-
phic to them. Theories of belief, knowledge and wanting can be constructed for machines in a 
simpler setting than for humans, and later applied to humans. Ascription of mental qualities is 
most straightforward for machines of known structure such as thermostats and computer ope-
rating systems, but is most useful when applied to entities whose structure is incompletely 
known.« (McCarthy 1979, quoted according to Shoham 1993, 53).

An agent’s intentions are formally described by means of propositional modal logic which 
augments the normal two-value logic (a proposition can be either true or false) by the two 
modalities that a proposition is necessarily or only possibly true or false. On this augmen-
ted logical basis, an agent’s intentional states like beliefs, desires or intentions can then be 
expressed in a formal language. The fact e.g. that agent a has the conviction that propositi-
on φ is true at time t can thus be modelled by the formal language expression Bel(a,φ)(t) 
(Wooldridge 2002).



The abstraction from real physical and algorithmic behaviour by ascribing intentionality to 
software agents or machines is an attempt to escape from the unpleasant fact that the 
course of this behaviour is untransparent, although determined. Because the behaviour 
cannot be explained on the physical level, it is pretended, by abstraction, to underly inten-
tionality. This lastly absurd kind of quasi-explanation leads to believe only that compre-
hension is possible, while the real behaviour still defies understanding. Rather than analy-
zing the problem, it is obscured instead. Both, however, the missing behavioural transpa-
rency as well as the attempt of ascribing intentionality as quasi-explanation, have fatal 
consequences for human-machine interaction with and safety of MAS (Norman 1994).

The vision of the »smart factory« highly depends on »machine learning« capabilities for 
adaptive behavior. They comprise diverse methods and algorithmic procedures for purpo-
sefully changing an agent’s structure, or its program respectively, such that its behavior is 
improved relative to a given utility function. The present chief attraction of the »smart fac-
tory« and »smart service« propagandists is »deep learning« in so-called »artificial neural 
networks« (ANN; for an introduction cf. Kriesel 2007). They consist of many simple, con-
nected processors called neurons, each producing a sequence of real-valued activations 
according to specific computing functions resembling neural functions (cf. fig. 3).

Fig. 3: Computing functions of a«neural« processor forming a node  

Input neurons get activated through sensors perceiving the environment, while other neu-
rons get activated in a layered order through weighted connections from previously active 
neurons. Some neurons may influence the environment by triggering actions. »Learning« 
then is about finding weights that make the neural network exhibit desired behaviour. 
Depending on the problem and how the neurons are connected, such behaviour may re-
quire long sequences of algorithmically controlled computational stages, where each stage 
transforms the aggregate activation of the network. For problems of speech recognition or 
image categorization e.g. – forming tasks where ANN are specifically successful – a very 
long sequence of patterns or images is presented as input together with the correct catego-
ries at the output; from this assignment, the network can, in many small adaptive steps, 
automatically compute the connecting weights wij (which implicitly mirror the learning 
progress) (cf. fig. 4).



Fig. 4: ANN for categorizing images (Source: c’t 6/2016)  

Consequently, successful ANN deployment does not depend on analytical insight into 
cause and effect relationships but rather is the result of theory-less trial and error with dif-
ferent structures and learning algorithms for adjusting the weights. Due to their extraordi-
nary performance, so called »convolutional neural networks« whose structures are inspi-
red by biological models have moved into the focus of interest for the time being.

Contrary to what is suggested, ANN are not conceptually new computational devices at 
all – in fact, they first appeared in 1950es and have been developed and proven since (with 
a long »winter« of disinterest in-between). Progress is not accomplished by any concep-
tually new AI idea but predominantly by the exponentially increased computational 
power allowing for much larger networks with considerably more components and layers 
(obviously in the illusion that quantity somehow turns into quality). Ironically, good re-
sults are mainly achieved, however, by the intuition, skills, and experience of the develo-
pers in structuring the networks and mastering the numerous practical computational 
problems – from the »vanishing gradient« to the variable increment control of learning al-
gorithms (Schmidhuber 2015).



In practical operation, users have to cope with the uncertainty whether the computed re-
sults are correct and suitable in the long run. Even if the ANN deliver adequate results in 
the vast majority of cases, they may suddenly fail without notice by the users. Even slight-
ly disturbed input data can lead to considerable failures (Sharif et al. 2016). For lack of 
transparency of the non-linear behavior of ANN, its reliability is difficult to evaluate; basi-
cally, users have no chance but to blindly trust in their functionality. 

Moreover, the appropriation for interactive use is seriously troubled in case of multi-agent 
systems with »deep learning« facility. Formally, these systems are »non-trivial machines«  
whose behaviour depends on history and, therefore, is intransparent and unforeseeable, 
although algorithmically determined. How can human actors put such systems to delibe-
rate instrumental use that each time exhibit a different behaviour – a property that clearly 
contradicts the HCI requirement of expectation conformity? On the users’ side, excessive 
expectations for the systems’ alleged »action competence« would be evoked at the same 
time. Confronted with this kind of contradictions, simultaneously exposed to high pressu-
re of management’s expectations for successfully mastering their tasks, despite the loss of 
control over their means of work with intransparent behaviour, the workers would suffer 
from permanent psychic stress (as already analyzed by Norman 1994).

Moreover, the division of tasks and functions between remaining workers and automati-
cally operating computing components is of fundamental significance for sociotechnical 
systems design. With respect to this essential design aspect, a number of »ironies of auto-
mation« have been early revealed from analyzing working activities in central control 
rooms, which even gain relevance since with growing systems complexity: Automatically 
operating »learning« systems like MAS are designed to widely replace human expert 
knowledge workers, whose working capacity is, however, urgently needed in cases of dis-
turbance or failure. The specific skills of the working capacity are fading away, though, to 
the extent they are not used during normal automatic operations. In the long run, a severe 
loss of competence will occur which will turn originally highly competent users into hel-
pless, unpracticed »operators« (Bainbridge 1983, for impressive new examples cf. Carr 
2013).

Consequently, these systems are inappropriate for interactive use; they can only be desi-
gned and operated as self-contained automata with the incalculable risk of undesired be-
haviour (examples of such »normal accidents« (Perrow 1984) are numerous).

 
2.3 Persistent self-deception

In order to catch the original speech flair of the »smart factory« propagandists, it is worth 
while to start with quoting a typical representative, a top manager from a German auto-
motive company, who at a recent conference characterized the specific features of the »Ro-
botic Enterprise: The Future AI Company« in the year 2025 with the following statements: 



»Super intelligent, continuously learning computers will take over much of what humans deal 
with so far: They automatically respond to customer or supplier questions by means of so called 
bots, they autonomously decide how prices for more than 200 models are adapted from country 
to country, they even design cars and compute how they can be produced. They will also take 
over cost accounting and controlling. […] They will even manage business meetings«  
(SZ 11.11.2016, own translation).

Comparing this with a similar statement from the previous wave of technological exuber-
ance (or again with Wiener’s earlier vision of 1950 quoted above) reveals high accordance:

»Computer integration represents the core of the future manufacturing innovation. It aims at 
automatically producing variable production programmes. … A new manufacturing structure 
emerges which, as a mechanic organism with programmed and, hence, stored intelligence is 
capable of automatically producing goods. … On this higher development level, the factory will 
need machine intelligence« (G. Spur 1984, a leading German manufacturing researcher at the 
time; own translation).

An unmistakable red thread of obviously contrafactual and wishful thinking winds 
through these visions. From the very beginning, these illusions and technological exuber-
ances rooted in mistaken metaphors describing the envisaged computer artifacts, e.g. 
»electronic brain«, »artificial intelligence«, »knowledge-based systems«, or »machine 
learning«. With their analogies and references to specifically human capabilities, the meta-
phors obscure essential differences between artificially created machines and autonomous-
ly living, socially interactive organisms. Hence, they produce delusions about the true na-
ture of computer systems. The behaviour of computers is, as computing science teaches us, 
strictly restrained to executing computable functions by means of algorithms, it thus neit-
her resembles the performance of a brain as part of a complex sensitive living body nor is 
it in any meaningful sense »knowledgeable« or »intelligent« – this predicate remaining re-
served for the programmer designing the algorithms or the users making sense of the 
computing functions. When the delusion of being able to implement »smart factories«, de-
spite the countless accomplishment failures before, gains momentum anew, it appears ab-
solutely essential to reflect on underlying misconceptions.

According to Hofstadter & Sander (2013), analogies are at the core of cognition; analogies 
allow to understand encountered new phenomena by means of existing experiences, they 
are instruments by which we apply the wealth of our previous experiences to the presence, 
and without them we would helplessly navigate in the world. Therefore, it is of essential 
importance to draw on appropriate analogies transferring the predominant characteristic 
to the new phenomenon. Exactly this fails with the above analogies taking specific human 
capacities for machine functions, thus confusing the true nature of both. This fallacy ulti-
mately leads to a mistaken equating of both phenomena.



This can be exemplified by ascribing intentionality to machines according to the »intentio-
nal stance« (as quoted above). It is legitimated »when such an ascription expresses the 
same information about the machine that it expresses about a person. It is useful when the 
ascription helps us understand the structure of the machine, its past or future behaviour, 
or how to repair or improve it.« The key word here is »information« which itself is totally 
confusing, as it denominates different, incompatible concepts: either the syntactical mea-
sure of the »entropy« of a string of signs from a finite set (alphabet) according to Shannon 
(1948) or »any difference that makes a difference« in the context of a social practice accor-
ding to Bateson (1980). By leaving this open, the physical world of deliberately designed 
machines with prescribed behaviour is confused with the social world of autonomous ac-
tors with the faculty of speech, of creating knowledge, and of designing purposeful arti-
facts. 

Similarly, the term »machine learning« is again based on a mistaken analogy or attributi-
on. The machine’s changing behaviour is achieved by algorithmic procedures controlling 
its adaptation to environmental changes (in fact, this type of machines have formerly been 
rightly called »adaptive systems«). In contrast, human learning is essentially based on re-
flective action control and the capacity of concept formation as foundation for creating ex-
plicit propositional knowledge. This confusion nourishes the illusion that computers 
equipped with »artificial intelligence« and »deep learning« capacities can widely replace 
human skills and working capacity. 

In philosophical terms, these mistaken metaphors are built on the fluctuant grounds of 
functionalism. Elaborated as an approach to overcome the flaws of behaviourism, functio-
nalism (Putnam 1960, Fodor 1968) recognises mental states as essential internal entities for 
explaining behaviour. Irrespective of their material implementation (as electronic hard-
ware or a biological brain), the mental states are regarded, however, as purely functional 
states according to the Turing machine model. This philosophical view is meanwhile re-
sumed to be refuted, though, because equal mental functions can – as Putnam, one of its 
originators later has shown (1991) with sharp-witted thought experiments – produce total-
ly different real world references like thoughts or experiences. In its more recent variation, 
with an interpretation of »embodiment« (cf. e.g. Varela et al. 1991) that again is narrowed 
by a positivistic attitude, CPS are simply equated with sensitive living human bodies 
which are up to empathy and able to reflect their context-bound experiences (cf. e.g. most 
recently Jeschke 2015). The scientifically founded difference between algorithmically de-
termined behaviour of an artifact and intentionally controlled sense making action and 
understanding in the context of social practices is again ignored.



With respect to the use of computers in organizations with knowledge work or value crea-
tion, where human experts interact with advanced computer systems, this difference is 
highly relevant for assessing the machinists’ claims of being able to implement »smart fac-
tories or services« replacing human competence and expertise. At the core, they deny the 
fundamental ontological difference between physical events and social facts: While causal 
relationships in the physical world – in which, on the basis of semiconductor physics and 
formal logic, machine computation is operating – exist independently of human activity, 
objects and facts of the social world such as signification, meaning, or institutions are sole-
ly created and maintained through communication and cooperation based on shared 
collective intentionality: They are originated by declaration, i.e. by speech acts that make 
something the case just by representing it as being the case (Searle 2010). 

Consequently, there seemingly is a unsurmountable gap between both worlds with respect 
to the social construction of meaning being inaccessible for computing machinery unless it 
is embedded in and appropriated by actors in the social world of an organization. For 
bridging the gap, it is useful to pick up the triadic sign concept elaborated by C.S. Peirce 
(1903), an American logician rooted in the pragmatist strand of research (who also was the 
first to develop a first order predicate calculus as another foundation for computing sci-
ence). With this sign concept, he distinguishes a physical entity, a signifying element called 
representamen, from a second entity as the object it refers to or designates, which can be 
present, distant, or imagined only. A third entity, the interpretant, assigns meaning to this 
reference in some context of social interaction. This sign concept provides the missing link 
to connect the physical world, in which computers process signals or data, with the social 
world of signification, of constructing meaning through interpretation in an action context. 
Distinct signification or interpretation of the data are possible due to the actors’ functional 
knowledge of the algorithms and of the inputs. Specifically, it opens up a praxeological per-
spective (Reckwitz 2002) for analyzing the complex interplay of algorithmically determined 
physical data processing with the social process of signifying or interpreting the data in 
the context of an organization’s social practices (this can be done e.g. leaning on Giddens’ 
theory of structuration (1984), for more details cf. Brödner 2009). In this way, the triadic 
sign concept mediates between signal and sense.

Confusing both worlds – as it is indicated for instance, when meaningless data are con-
stantly equated with meaningful information – has effects in two directions: In one direc-
tion, it reduces living beings, in a positivistic and reductionistic attitude, to the functionali-
ty of machines, while on the side of the users it creates the illusion of capabilities compa-
rable to theirs. Leaning on this, the »smart factory« approach can, of course, be misused as 
ideological offensive: With threatening scenarios of replacement, living labour is set under 
pressure to accept the new »industrial revolution« in all aspects as an inescapable »natu-
ral« event. Public awareness thus is distracted from deliberate massive institutional, parti-
cularly labour market deregulation which often are the real threat to decent work and in-
come (which is e.g. mostly the case with businesses operating »crowdsourcing« and 
»clowdworking« platforms). In this way, detrimental consequences can easily be ascribed 
to »technological progress« which allegedly cannot be »hold up«.



3 Big Data and the Struggle for Autonomy

The pervasive implementation of »cyber-physical systems« is accompanied by origination 
of huge amounts of data – »big data« – being processed in unprecedented volume, variety, 
and velocity. These data can originate from diverse sources and they may differ in the way 
they are structured, e.g. as text or image documents, or data base entries, and can still be 
combined for processing. Because of the exponential increase in computer power with re-
spect to processor and storage capacity, it is now possible to keep huge amounts of data 
ready for very fast processing in the random access memory (so called »in-memory tech-
nology«). Moreover, highly expanded band widths allow for transferring huge data volu-
mes. If necessary and with suitable tasks, data volumes and algorithms can even be split to 
different, locally dispersed processors. All this contributes to exploiting the full perfor-
mance potential of advanced computer technology for coping with complex tasks.

Big data processing gives rise to some substantial, eventually even unsolvable problems, 
though. One severe problem concerns the methodology of rational processing itself. Only 
recently, the editor of the internet magazine »Wired« has, in typical, commonly shared atti-
tude of technological exuberance, proclaimed the »end of theory« in a full-bodied way: 
Theoretically informed research with proven scientific methods could just be replaced by 
huge volumes of data, in the »petabyte age« forecasts on the basis of pure correlations 
would be superior to hypotheses-based propositions, and correlation would replace causa-
lity (Anderson 2008). This unbelievable folly reproduces the well-known fallacy of »cum 
hoc ergo propter hoc«: When two events a and b coincide, one can never know without addi-
tional expensive analysis whether a has been caused by b or reversely b by a; one cannot 
even know whether both events depend on an unrecognized common third incident or 
whether they occur just by accident. Ultimately, this view leads to the apophenic delusion 
of perceiving patterns in purely random data. It looks like the inmates are running the 
asylum.

Big data volumes, particularly if they stem from different sources, normally have deficient 
quality: The data mostly are not representative or error-prone, they can even be obsolete or 
inconsistent. In many cases, one cannot even assess the extent to which the quality is defi-
cient. As long as the big data processing does not apply accepted strong methods for sta-
tistical conclusion, however, which include knowledge of the data quality, it must be seen 
as scientifically embellished reading tea leaves. Nevertheless, data have frequently been 
adjudged to be an »important economic good«, the »bulk oil of the 21st century«; if so, 
they then need equal careful and expensive refinery for extracting useful information.



Finally the deficient data security produces severe problems. Organizations run into huge 
risks by loss or theft of data, by either spying from outside or sabotaging from inside (risks 
about which almost daily reports on »cyber attacks give evidence). The risks become even 
higher, if the data and the processing procedures use to be outsourced to service providers 
or into the »cloud«. With respect to frequency and volume of the damages experienced, it 
is hard to understand why firms with ambitions for »industry 4.0« projects deliberately 
expose their continuously emerging, highly competition-sensitive data streams about pro-
ducts and processes to such risks. Even if much technical and organizational efforts is in-
vested in data security, they will never be sufficient, since any sophisticated security mea-
sure can, as experience teaches, be overcome again.

According to a bon mot of the grand semiotician Umberto Eco (1976), a sign is »anything 
that can be used for lying«. This illuminates in a paradoxical way again the deep insight 
Peirce had into the logic of signs according to which data represent something in a certain 
context and for a social actor only. Their meaning always is the result of interpretation in 
the shared context of a social practice. That which a physical sign stands for, the designa-
ted object, and the meaning which is ascribed to it, are first of all up to the sign’s author 
using it for a message. Those who take it up for interpretation are free, to interpret it as 
expected or other (as far as the context allows). In other words: How data are being inter-
preted defies the author’s control. This is why signs can always be used to deceive, to 
trick, to defame, or to degrade (all this being frequent practices in the social web and by 
secret services as well). Via the social web, thus otherwise locally constrained practices of 
intrigue are becoming a global phenomenon.

Physical computer signals or data are, due to their formal and abstract nature, context-free 
and meaningless; nonetheless, they frequently use to be equated with meaningful informa-
tion derived from context-dependent interpretation. By this common error it is suggested 
that physical signals or data as such allegedly possess information, meaning, and validity 
quasi as fixed qualities. It is true that parts of the context can be reconstructed from a 
number of data referring to the same object or person if the according algorithm’s seman-
tics is known and, thus, constrain the range of interpretation, but this incompletely recon-
structed context still leaves space for various other interpretations and misinterpretations. 
Despite this interpretive space and often questionable data quality, data suggest objectivity 
and factuality like in cases of presumptive evidence (rightly seen as questionable). Moreo-
ver, due to the social construction of reality, the interpretation often describes a reality just 
created by the signifying process itself or it even unfolds the effect of a social norm: De-
scriptive can be turned into normative data, frequency can change to certainty, and inte-
rest-bound signification can be enforced by power (as can be seen e.g. in cases of self-
tracking or of determining creditworthiness; cf. Boyd 2011).



Due to these peculiarities of the social use of signs, control over the data and their proces-
sing algorithms delivers a powerful ruling instrument in the hands of management or go-
vernment. With comprehensive global data collections and various data processing me-
thods, a powerful instrument for behavioural control and dominance emerges in the 
hands of the owners; it can, at any time, be used in many ways for exerting influence and 
power at their discretion, from manipulating public opinion to threat and blackmail. This 
is possible exactly because the suppliers of the data lose the sovereignty and control over 
their interpretation in the moment they give the data away. This enables the successful 
implementation of a perfect panopticon (sensu Bentham and Foucault) lighting all corners 
of knowledge work processes or the social web: It remains the secret of the observer whose 
behaviour he observes and how he is interpreting it.

Besides the severe use problems with non-trivial machines, this loss of informational au-
tonomy appears as the most threatening societal damage the third wave is about to produ-
ce. As it might end in a digital totalitarianism, the struggle for autonomy on all levels of 
social practice is of foremost importance. 

4 Conclusion: Perspectives for Intelligence Amplification
Computers are data processing machines, hence their functionality is semiotic in nature. 
They fundamentally differ from classical machines transforming matter or energy: While 
the latter operate in the physical world of natural processes and their functionality makes 
use of natural forces and effects for increased efficiency and productivity, computers per-
form computable functions within formalised sign structures, processing signals or data 
determined by algorithms, nothing else. Formalizing sign processes, their reduction to 
computable functions, therefore is a necessary prerequisite. 

When operating in organisations, computers and their »auto-operational forms« (Floyd 
2002) are, based on sufficiently modelling and formalizing underlying sign processes, fully 
embedded in the social world of social interaction in the organization’s practice, namely 
the expanding knowledge work. Computers can, thus, be used to organize, process, and 
store codified knowledge represented in data (Brödner 2009). Productivity, therefore, can 
only improve, if the sign processes of this social practice are organized more efficiently 
through computer operations – this being the true reason for the empirical findings on the 
productivity paradox quoted above. Unfortunately, these essential relationships are obscu-
red by the unreasonable terms »digitization« and »digital transformation« permanently 
used for computerizing knowledge work.



Only by emphasizing the fundamental differences, it is possible to adequately design de-
cent and efficient computer-supported work. Recognizing the differences and taking the 
praxeological perspective as outlined allows to focus the view on how exactly computer 
artifacts are emerging from conceptually analyzing social practices, how appropriating 
their functions for effective use intervenes in social practices of knowledge work, and 
what the decisive issues of taking influence are. Both, the design, predominantly the ana-
lysis, modelling, and formalization of sign processes, as well as the organization of the 
elaborate appropriation of the computer functions derived from that for effective practical 
use, are the neuralgic fields of participatory intervention of computer experts and potenti-
al users. Both are highly contested terrains with respect to interpretation, interests and 
exertion of power. That is why they also are the main fields of influence of knowledge 
workers and their stakeholders. Due to its utmost importance as productive force, the de-
velopment of working capacity of living labour, its implicit knowledge, practical skills, 
and competences, must be the guiding principle. 

In design of sociotechnical systems, in particular in development, implementation, and 
use of computers in manufacturing, activities have, as historical retrospective shows, al-
ways been underlying two contrarian perspectives:
• The technology-centred perspective of most extensively automating knowledge work as it is 

driven by the efforts for accomplishing »artificial intelligence« – AI (artificial intelligence) 
–: »Smart machines« and »autonomous agents« networked as multi-agent systems with 
»deep learning« capacity and combined with »big data« procedures are envisaged to 
imitate and widely replace human working capacity in manufacturing and services; 
their capacity to »learn« – in fact their adaptivity to environmental conditions only – is 
nevertheless supposed to provide sufficient flexibility for adapting to changing require-
ments (according to the »intentional stance«; Minsky 1988, Shoham 1993, Wooldridge 
2002).

• Under the praxeological perspective, in contrast, advanced computer systems, designed, 
appropriated, and used as human and task appropriate tools and media for cooperation 
– IA (intelligence amplification) –, are envisaged to support living labour in such a way that 
the working capacity and, consequently, productive and innovative capacities are enab-
led and stimulated to grow: »things that make us smart« (Norman 1993; cf. also Ehn 
1988, Winograd 1996).



As indicated above, due to poor previous experiences and the problems presented with 
various AI efforts, the technology-centred perspective appears to be less promising, rather 
a waste of resources. In contrast, evidence-based examination reveals that the widespread 
use and secular success of computer technology is predominantly based on the praxeolo-
gical IA perspective of intelligence amplification and the organizational development efforts 
connected to that approach. In this perspective, human skills, particularly reflective and 
conceptual learning capacities, are combined with the precision and velocity of the machi-
ne. This must be put in the center of awareness in order to combine flexibility with effici-
ency. The socio-technical design then needs to be oriented at the peculiarities and needs of 
human acting and social practice. In particular, those conditions need to be regarded, un-
der which human working capacity can unfold for increased productivity and creativity. 
For accomplishment, working tasks sustaining competence and fostering learning, task-
appropriate, transparent and controllable means of work with expected behaviour, as well 
as sufficient time resources for appropriating the tools and optimizing processes are nee-
ded (Brödner 2013). Four decades of extensive labour research provide a sound footing for 
that (although this knowledge base seems to presently fade away).

According to the dynamics of explicating practical skills as explicit codified knowledge 
and of appropriating this knowledge as augmented skill, the use of computer systems in 
organizations massively intervenes into their social practices, frequently with surprising 
results. Practical human skills and experiences supported by task-appropriate tools often 
prove to be superior to »smart« automatically operating systems replacing human actors; 
this is even true, if the automata perform better than human experts: The chess champion 
Kasparov e.g., who had been outperformed by IBM’s »Deep Blue« computer, has on his 
part beaten again a comparably powerful computer by using a much simpler personal 
computer as a supportive tool (Kasparov 2010).

According to this type of human-computer interaction, continuously collected data from 
CPS might, for instance, be used as input in systems for interactive assistance with advan-
ced usability to reconfigure or optimize production processes, to simulate and control such 
processes, or to use data analytics for preventive maintenance. For effective interaction, it 
is important that users have opportunity to control the degree of detail with which they 
can look at the progress of machine or process states, at given settings, or at methods in 
use. This is needed in order to enable the users to generate a discrete picture of the inci-
dents or the constitution of results, and to purposefully interfere. On the other hand, for 
handling the data safely, general agreements need to be accepted that regulate their use 
practice, particularly access conditions and operating methods.

To follow this praxeologically informed IA-perspective, means to accomplish higher flexi-
bility, productivity, and innovation capacity by sociotechnical design of decent work, ra-
ther than betting on questionable AI-promises. It means to organize a productive, creative 
and autonomous cooperation of competent and knowledgeable experts supported by use-
ful and usable computer artifacts such that their working capacity and competence can 
further grow. It lastly means to leave the road to subjection.
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