
Enabling Users of Enterprise Systems to Mashup
Resources and Develop Widgets

Michael Spahn, Julian Dax, Fahri Yetim, Volkmar Pipek

in: V. Wulf; V. Pipek; D. Randall, M. Rohde; K. Schmidt; G. Stevens (eds):

Socio Informatics – A Practice-based Perspective on the Design and Use of IT Ar-

tefacts, Oxford University Press, Oxford 2018, pp. 421-444

Abstract. Companies are operating in a dynamic environment and need con-

tinuously to adapt their information systems to changing business processes and

associated information needs. Viewed from a micro-perspective, business users

are managing and executing business processes on a daily basis, but are not able to

adapt used software to their individual needs and working practices. In this chap-

ter, we present the development and evaluation of a prototypic environment which

enables users to create enterprise widgets tailored to their personal information

needs without the need of programming knowledge. It allows the mashing up of

enterprise resources using a lightweight visual design technique. The evaluation of

the prototype in business contexts indicates its usefulness and usability.

1. Introduction

Many companies use enterprise software systems like Enterprise Resource

Planning (ERP) systems to support and facilitate their business. Companies oper-

ating in dynamic environments need to continuously adapt their information sys-

tems to changing business processes and practices as well as their associated in-

formation needs (Henderson & Kyng 1989; MacKay 1990; Wulf & Rohde 1995).

Small and medium-sized enterprises (SMEs) in particular often suffer from their

inability to adapt enterprise software to their needs, due to a lack of resources and

expertise (Roth & Scheidl, 2006; Dörner et al 2011., Yetim et al., 2010). As a con-

sequence, they are often forced to adapt their work processes and practices to the

possibilities offered by the used enterprise software or to delegate configurations

to IT professionals. This adaptation process is both lengthy and costly (Markus &

Tanis, 2000; Brehm et al., 2001; Wulf & Jarke 2004) and often has adverse conse-

quences for businesses competitiveness.

One possible way to deal with this challenge is to enable end-users of ERP sys-

tems, from now on referred to as business users, to tailor systems to their needs,

since they are managing and executing business processes on a daily basis and

thus know best about changing requirements and the consequent need for adapta-

tions. Usually, ERP systems allow users to access relevant business data directly

via the user interface, or to extract data using queries and reports. However, in

many cases, users need to create custom queries and build tools consuming and

2

processing information in a way uniquely tailored to their needs (Spahn et al.,

2008b; Dörner et al., 2011). The complexity of ERP systems and available tools

remain, it seems, challenging for business users with less technical knowledge.

Enabling users to adapt systems on their own, without the need of specialized

technical knowledge, is one of the main concerns of approaches to Tailorability

and End-User Development (Henderson & Kyng 1989; Fischer et al., 2004;

Lieberman et al., 2006; Wulf et al., 2008; Spahn et al., 2008a; Dörner et al. 2009).

The aim is to do rather more than design systems that are flexible and easy to

adapt. It is, above all, a call for socio-technical infrastructures to enable users to

participate in their work contexts through the use of their application systems

(Pipek 2005; Pipek and Wulf, 2009; Stevens et al. 2010; Yetim, et al., 2012). End-

user oriented approaches emphasize both the flexibility of systems for adaptability

in a technical sense and the methods to leverage this flexibility at the hand of end-

users. To achieve these goals may require the integration of several technologies

(Dörner et al. 2011, Hess et al. 2012, Boden et al. 2014). For example, Service

Oriented Architectures (Erl, 2005) provide an increased flexibility and rich possi-

bilities for IT professionals. However, technical flexibility cannot be leveraged by

end-users alone, as they typically lack the IT-expertise to make use of these com-

plex standards. In contrast, web-based applications such as mashups (e.g. Mi-

crosoft Popfly or Yahoo! Pipes, IFTT) embody light-weight design principles and

allow users to mash up data from different resources into a single integrated tool

and thereby to create a new and distinct service. These mashups and composite

applications were considered one of the top ten strategic technologies of recent

years (Gartner 2007).

The goal of the research described in this chapter is to develop methods and

tools to enable business users to create individual information artifacts tailored to

their individual information needs and work practices. In order to archive this, we

followed a design case study approach. In a design case study, there are three

phases (Wulf et. al, 2011 and 2015):

1. Empirical investigation of the practices in a specific field.

2. Development of a hard- or software prototype based on the findings of

phase 1.

3. Empirical investigation of the appropriation of the hard- or software

prototype over a longer period of time.

This translates to the following three phases in our study:

First, we conducted empirical investigations into the work practices of users in

SMEs to identify data-centric adaptation problems that business users face in their

work context. We analyzed the results on a meta-level to identify existing compo-

sition processes of information artifacts that our solution has to support and the

relevant building blocks used. As identified components need to be composed by

users of a system in an intuitive and lightweight way, we also conducted a partici-

patory design workshop (PDW) to get insights into how users intuitively create in-

formation artifacts using a simple design technique like boxes and wires.

3

Second, to address some of the identified problems and needs, we developed a

prototypical design environment for business users, which allows them to create

widgets. Widgets are small, inter- active applications for displaying data, pack-

aged in a way to be executable on a user’s machine (Caceres, 2008). By using a

very lightweight mashup design technique and encapsulating mashups as widgets,

we aimed to enable business users to develop small, interactive applications using

enterprise resources and to deploy these applications directly to their machine,

without the need for any programming knowledge. In this way, the whole chain of

developing building blocks and composing them to widgets are put in the hands of

SMEs.

Finally, we deployed the prototype in three German SMEs, evaluated its usabil-

ity and usefulness and investigated its appropriation. We were interested how

business users can create widgets using the lightweight design approach, and

which practical problems can be addressed using simple applications such as

widgets.

In the following sections, we present each of the steps and their results and also

provide some conclusion.

2. Related Work

There are many definitions of the term 'mashup.' Depending on the perspective

and context of the researchers, they define mashups according to technological or

economic criteria. Some have attempted to find an overarching definition which

encompasses all these factors. Koschmider et al. (2009), for example, define a

mashup as 'a Web-based application that is created by combining and processing

on-line third party resources, that contribute with data, presentation or functionali-

ty.' In this paper, we adopt the definition of enterprise mashups from Hoyer and

Stanoevska-Slabeva (2008) 'An Enterprise Mashup is a Web-based resource that

combines existing resources, be it content, data or application functionality, from

more than one resource in enterprise environments by empowering the actual end-

users to create and adapt individual information centric and situational applica-

tions.' When we discuss mashups in this chapter, we always refer to enterprise

mashups in this way.

Several tools and approaches allow end-users to create mashups (e.g., Yu et al.

2008). In this chapter, we will focus on those that are most closely related to our

work and served as an inspiration for it. We categorize these approaches and tools

according to whether they support resource integration, resource transformation or

widget orchestration.

2.1 Resource integration tools

Resource integration tools encapsulate resources and provide access to them.

They do this in a way that allows other components to use them. This needs to be

done in a seamless, substantial and appropriate fashion. Examples of resource in-

4

tegration tools are Dapper (http://www.dapper.net/open/) and OpenKapow

(http://openkapow.com). These tools allow users to define rules to extract struc-

tured data from unstructured HTML files. The research prototype, Karma (Tu-

chinda et al., 2008), uses this approach and extends it by allowing users to specify

examples of how the extracted data should look and automatically generate trans-

formation rules from these examples. Another research prototype called Marmite

(Wong 2007) allows end users to combine existing Web content and services from

multiple Websites into new applications that were not envisaged by the websites’

designers. Marmite uses a dataflow architecture that is similar to Unix pipes. It

supports the extraction of content from websites (e.g., names, addresses, and

dates), which can be processed in different ways, such as filtering values or adding

metadata. Its output can be directed to different sinks, such as databases, map ser-

vices, and web pages. However, Marmite cannot use data sources other than web-

sites and hence cannot be utilized in an ERP context.

2.2 Resource transformation tools

Resource transformation tools support the creation of newly configured soft-

ware, which recombines and transforms resources with the aim of providing the

result of the transformation process as a single resource. Examples of such tools

are Yahoo! Pipes, JackBe Presto Wires or IBM Damia. Users can use these tools

to combine parameterizable function blocks from a predefined catalog. Yahoo!

Pipes uses a similar UI design to the aforementioned Marmite. It allows end- users

to manipulate, integrate and visualize data using the box-and-wire metaphor. Us-

ers can share the "pipes" they create with other users on the platform. The research

prototype DERI Pipes (Le-Phuoc et al. 2009) is similar to Yahoo! Pipes but ex-

tends its approach to the usage of semantic web technologies. All of these ap-

proaches are arguably not well suited to the ERP context, however.

2.3 Widget orchestration tools

Widget orchestration tools allow the creation of widgets from the resource

transformation and resource integration tools provided. We classify the created

mashups into presentation mashups and application mashups.

Presentation mashups combine different widgets into one user interface without

interconnecting these widgets. Often, users can simply choose from a collection of

predefined widgets (stock prices, weather, news) and add them to the mashup in-

terface. After that, the selected widgets can be customized. Examples for this are

MyYahoo (https://my.yahoo.com/), Netvibes (http://www.netvibes.com/) and uS-

tart (http://www.ustart.org/).

Application mashups are also created by combining different widgets in an in-

tegrated user interface, but they also allow the definition of application logic.

Widgets can be connected to create reactive and interactive applications. One ex-

ample for this is IBM QEDWiki, a prototype which lets users create portal pages

out of widgets. Intel MashMaker (Ennals and Garofalakis 2007), for instance, is a

5

browser plug-in which allows the manipulation of existing web pages. Another

system in this category is EMAP (Enterprise Mashup Application Platform),

which enables users to create mashups of enterprise applications (Gurram et al.,

2008). Like many such systems, EMAP comes with predefined widget compo-

nents that can be combined and parameterized. In contrast to Yahoo! Pipes and

Marite, it uses events for the communications between the widgets. It is one of the

view systems focussed on the business domain. Ardito et al. (2014) present an in-

tegrated, general-purpose mashup environment which allows the creation of so-

called Personal Information Spaces (PIS). In these spaces, users can gather, inte-

grate and visualize data from different web services and APIs. This environment

was then developed further into the EFESTO platform (Desolda et al. 2016) which

also supports other data sources like Linked Open Data.

More reviews of mashup technologies can be found in Hoyer and Fischer,

(2008), Koschmider et al., (2009), Albinola et al. (2009), Aumüller and Thor

(2008) and Yu et al. (2008).

2.4 Research gaps

Currently, there is something gof a a lack of empirical studies in the area of en-

terprise mashups. Most research is focused on technology and tools. Papers dis-

cussing the use of mashups in companies (e.g. Soriano et al. 2007, Hoyer and

Stanoevska-Slabeva (2008)) are based in the main on theoretical considerations

and explorations of general trends. There are some empirical studies, but they only

deal with the usability aspect of mashup tools (e.g. Wong, J. (2007)). Evaluation is

not typically done in the field. In this paper we provide insight into how these

tools are used in real work environments and investigate the utility of mashup ap-

proaches in the organizational contexts for information access.

3. Empirical Investigations in Practice

3.1 Exploration of Users' Problems and Needs in Practice

To understand the problems experienced and requirements for the design of

practically relevant tools, we conducted 14 semi-structured interviews based on

qualitative research methods (Kvale, 1996) in three German midsized companies

that use the SAP ERP system to support their business.

Company A is a producer of bags, backpacks, suitcases, and similar items with

a staff of 140. A partnering company in Asia procures most of the raw materials

and manufactures subassemblies. Final assembly, marketing, and sales of the

products take place in Germany. Company A does not sell directly to retail cus-

tomers but uses resellers. Company B is a software company which develops and

sells its software products but also develops software on commission. It has 500

employees. Company C produces custom textiles for the automobile industry and

employs 137 people. So, two companies we investigated were from production

industry (137 and 140 employees), and one was a larger software vendor (500 em-

6

ployees). In all three companies, the IT department manages the introduction or

modification of software together with technically adept staffers from the affected

department. These so-called "key users" help to disperse the knowledge about the

new system in the company and are local counterparts for other users who experi-

ence problems or have questions about the software. Every department has one

key user. In some cases, external consultants are also involved in the introduction

process.

We conducted semi-structured face-to-face interviews in an exploratory way to

get insights into operational tasks and existing work practices. This investigation

revealed that users face two classes of problems associated with information dis-

play:

 Information related to a particular task is scattered around the ERP

application, hard to find, or only available in several different applica-

tions.

 Information cannot be filtered, accumulated, combined or displayed in

a way suitable to a specific task.

 As an example for the first category of problems, one interviewee who was in

charge of reviewing customers credit lines reported the following: "I occasionally

have the problem that I need to access four or five things in one row in order to get

what I need […] for example, when I do the annual review of credit lines. I need

master data, data from SD [SAP's ERP module for sales and distribution] and

some data from accounting [...]". An example related to finding information was

given by another interviewee: "When it is about master data, then I know that I

can jump to the field in most cases and press F1 for help, where the data is saved.

[..] But there are things which you cannot find this way, not even X1 from the IT

department."

 As an example for the second category of problems, an IT manager described

the following case: "[the ERP system] sums up the revenue numbers on a monthly

basis. To calculate the daily revenue, we access the revenue numbers every morn-

ing at the same time and manually enter them in an Excel sheet. By subtracting the

collected sums, we then calculate the daily revenue numbers."

We found several cases in which Excel sheets were used to deal with problems

in the second category. These Excel sheets can get quite sophisticated, as one user

describes: „To plan how much to order, I separate the year into several time peri-

ods based on experience. […] I can estimate when demand is going to be high or

low, which colors sell the best and if a product introduction causes additional de-

mand." The user created his individual, complex solution which he has to update

manually at regular intervals to carry out this planning and forecasting task. More

concrete examples of problems in the two categories can be found in Spahn

(2010).

Due to the complexity of the data model exposed by the ERP system and the

complexity of the tools for query creation provided by the ERP system, most users

1 All names are anonymized to protect participant’s privacy.

7

were not able to create custom queries on their own in order to get data out of the

ERP system in the way they desired. Additionally, business users were not able to

create any custom information artifact providing interaction on live data with the

ERP system. Many users have to access a particular set of data relevant to their

individual working tasks from the ERP system many times a day. In many cases,

this data cannot be accessed from a single location within the Graphical User In-

terface (GUI) of the ERP systems, forcing users to access multiple locations and

collect the needed data in an unnecessarily cumbersome fashion. As they are not

able to create any customized GUI or interactive application, providing access to

relevant data at a glance, many working tasks can only be executed in an ineffi-

cient and cumbersome manner. More details of this study are documented in

(Spahn et al., 2008b).

3.2 Observing the Users' Design

A prerequisite for building lightweight design environments for composition is

the identification of a straightforward and easy-to-use design technique for com-

position. We therefore investigated the effects of confronting users with a simple

design metaphor like boxes and wires (e.g. employed by Mashup tools like Ya-

hoo! Pipes). We chose the boxes and wires technique because it enables visual

modeling while using a minimum of different design entities. To get initial in-

sights into how users interact with a fairly elementary modeling approach, we

complemented our interview study with a PDW, putting users in the role of de-

signers (Muller, 2003).

In the PDW business, users had to design an information artifact representing a

tool that could support users in an analytic task which participants took from their

work context. To create the solution, the users could add boxes to the design

space that represent data or functionality. Boxes had output ports and input ports

and users could connect these ports by drawing lines to define data or control flow

between the boxes. The boxes and wires model was left underspecified. We gave

no concrete instructions to the users on how to formally specify the meaning of the

used design elements. The underspecified semantics enabled us to observe users'

natural design behavior, while they were using the design elements (Pane et al.,

2001) more or less intuitively. The design behavior and the created artifact were

analyzed to get a better understanding of how users approached this design task.

The PDW revealed that users intuitively thought of boxes as a representation of

tabular data, organizing data in rows and columns. By connecting boxes, business

users related data from different boxes with each other and defined the data flow

of the solution. The users had no problems using the boxes and wires design para-

digm itself to specify a solution but had problems expressing what data a box

should represent. The users decided to describe the data by giving a short descrip-

tion on how they would access the data in their used ERP system. Details of this

study are presented in (Spahn et al., 2008b; Dörner et al., 2011).

8

Figure 1: Visual concept of the desired output of the system (left) and of the user inter-

face (right) designed in the PDW.

4. Design and Development of Widget Composition Platform

4.1 Motivation and Preliminary Remarks

To address the problems and needs identified in the empirical investigations,

we subsequently developed two prototypes for supporting business users. These

tools solve two main problems: First, business users create custom spreadsheets

and rely on getting relevant data from the ERP system by using queries, but face

considerable challenges when trying to define custom queries for their individual

information needs. The first application, called "Semantic Query Designer"

(SQD), provides sophisticated visualization, navigation, search and query building

possibilities and enables business users to create custom queries. A detailed de-

scription of this application is provided in (Spahn et al., 2008c).

The second central problem concerns the fact that business users needed to ac-

cess the same set of data within the GUI of the ERP system over and over again in

a cumbersome manner and were not able to create custom interactive applications

that provide the information relevant to individual working tasks at a glance. In re-

sponse to this problem, we developed a web-based environment called "Widget

Composition Platform" (WCP), to enable business users to mashup enterprise re-

sources in a visual design environment in a very lightweight way and to deploy the

created mashups in the form of widgets to their local machines.

In this section, we will describe the functionalities and architectural compo-

nents of the WCP. In response to the positive results of the PDW on the useful-

ness of box-and-wire technique, we decided to implement this metaphor in the

WCP for offering a very lightweight visual mashup design environment. Boxes

represent services that provide enterprise data that are in most cases rendered as a

9

table. As the empirical investigations revealed, business users were able to use

services providing data in a tabular format in an intuitive way for designing soft-

ware artifacts.

For the realization of a visual mashup design environment, we could build on

an early internal prototype of SAP Research, one of the partners in the consortium,

that we modified and extended to suit our needs. Despite this, we faced considera-

ble challenges in realizing a solution that could be deployed and used within

SMEs for two main reasons. First, SMEs often use ERP systems that are not (yet)

service-enabled and thus cannot provide enterprise resources as services that are

accessible using standard web protocols, which is an essential precondition for de-

ploying developed mashups as a widget on standard widget runtimes. Second,

even if enterprise systems were exposing a fixed set of resources as services, this

set could not be extended without programming skills and thus would limit the

creatable solutions to combinations of predefined services. To address these chal-

lenges, we implemented middleware which can wrap resources from not previous-

ly service-enabled ERP systems and provided these as services which were acces-

sible using standard web protocols. SMEs must be able to create new services

using existing knowledge and without any programming skills, since some of their

members, at least, do not possess the requisite skills. There are SMEs which can

build queries within the existing ERP system, so we enabled the implemented

middleware to wrap queries stored within the ERP system and expose these as

services. Using the existing skills of query creation to allow the creation of new

building blocks for widget creation has several advantages. It limits entry barriers,

enabling users to utilize the new technology in a flexible way. It can also be seen

as a kind of gentle slope of complexity approach (MacLean et al. 1990, Wulf et al.

2008, Spahn et al., 2008a) that puts the whole chain of widget creation in the hand

of SMEs. Additionally, by enabling the use of queries as services, a relation be-

tween the prototypes SQD and WCP is established, as end-users can use SQD for

easy query creation, and WCP to mash up these queries to widgets.

In the following subsections, we describe the system prototype in detail. We

first describe the basic conceptual layers that are implemented by the WCP envi-

ronment and then explain architectural components of the WCP environment and

their interaction. Finally, we describe the user interface aspects and explain how

business users can create widgets by mashing up enterprise services.

4.2 Conceptual Layers

On a conceptual level, the WCP and created widgets are based on a layered ar-

chitecture. Significant components of this conceptual architecture are classified

and structured in the widget stack depicted in Figure 2. The widget stack consists

of five primary layers: resource layer, application programming interface (API)

layer, wrapper layer, service layer, and mashup/widget layer. We will describe the

layers in figure 2 bottom-up, as each layer requires the functionality provided by

its subjacent layer (Spahn & Wulf, 2009, Spahn, 2010).

10

Resource Layer. The resource layer consists of all resources that can be inte-

grated into mashups. Resources can be data such as customer master data stored in

an ERP system, or functionality, such as locating an address and returning an ac-

cording image of a map provided by a map application. Resources are managed

and provided by systems that can be internal or external to an organization. Inter-

nal systems might be various enterprise systems, like ERP or Customer Relation-

ship Management systems, or general-purpose relational database management

systems (RDBMS). External resources might be provided by systems accessible to

a closed user group, including systems of suppliers, customers or B2B market-

places, or by systems publicly available over the internet, e.g. map services or

stock quotes.

API Layer. The API layer consists of the well-defined interfaces provided by

the systems managing the resources. Depending on these systems, different for-

mats and protocols may be needed to call the APIs and access the resources. APIs

of modern service-enabled systems may be exposed as web services that can be

called using standard web protocols, while legacy systems may expose APIs only

as libraries that can be linked into source code and communicate with the system

using proprietary protocols. Required formats of input parameters and formats of

returned results vary accordingly and range from XML structures to proprietary

binary formats.

Figure 2: Conceptual layers of widget stack in the WCP environment.

Wrapper Layer. The wrapper layer provides a unified service model. The ser-

vice model is consumable by the service layer and abstracts from the heterogenei-

ty of APIs, protocols, and formats. More specifically, wrapper components trans-

form abstract requests to the abstract service model to concrete requests using the

respective API, protocol and parameter format of the addressed resource. These

components convert raw results received from the API to a format that the unified

service model can process (e.g. data structures storing tables, lists or even images).

Each resource does not require its individual wrapper component. Generic wrap-

pers can wrap certain types of resources, like SAP ERP queries or RSS feeds, in a

11

generic way. These generic wrappers are exposed as service types in the service

layer.

Service Layer. The service layer provides a repository of services that can be

mashed up in the mashup environment. All services are parameterized instances of

service types, relating services to a certain wrapper component in the wrapper lay-

er. For example, a service "Customer data" providing data from a SAP ERP query

is an instance of the service type "SAP ERP Query" that relates the service to an

appropriate wrapper component. The service instance uses parameters to specify

the concrete query inside the SAP ERP system which the wrapper component can

access. Services provide further configuration possibilities that vary depending on

the type of service. For example, the desired type of data visualization (e.g. ren-

dering data as a table or a list), or the set of available data filters that the GUI ex-

poses in the mashup environment, can be configured. Services can be further de-

scribed by adding information like name and description text.

Mashup / Widget Layer. The mashup and widget layer adds mashup func-

tionality to the unified service model of the service layer and provides the func-

tionality to deploy mashups as widgets. Users can define mashups by specifying a

wiring of design elements, interconnecting design elements and defining the de-

sired data flow. Design elements can be services or additional UI elements (e.g.

text boxes). The wiring defines how data from one design element is used to pa-

rameterize calls to other (de- pendent) design elements. Dependent design ele-

ments react on data updates of connected design elements and update their data

accordingly. Mashups can be encapsulated as widgets and deployed as self-

contained applications to individual runtimes, e.g. the Yahoo! Widget engine

(http://widgets.yahoo.com). The mashup creation and widget deployment func-

tionality are provided by the mashup and widget layer to end-users by an integrat-

ed EUD environment.

Relevant business data needs to be available as services in the service layer to

enable business users to create custom widgets supporting their individual work-

ing tasks. Therefore wrapper components and service types need to be implement-

ed to be able to wrap resources from relevant enterprise systems.

4.3 Architectural Components

Our prototype instantiates the conceptual widget stack (Spahn & Wulf, 2009;

Spahn, 2010). Figure 3 provides an overview of the system components. The cen-

tral component of the prototype is the WCP, a web application which is imple-

mented using Java technology and runs inside a web application server. The WCP

provides an integrated, web-based, graphical end-user development environment

for widget creation. A service repository manages all services that users can mash

up within a widget. A widget deployment component within the WCP is responsi-

ble for creating source code, encoding the currently created widget for multiple

runtime environments. During the process of widget composition within the WCP

user interface, this component generates code for the WCP browser runtime librar-

ies, so that the widget is fully functional within the user interface that the browser

12

renders. If the user decides to deploy the developed widget to a widget runtime

engine, the component generates code tailored to that engine. It also packages the

widget to a file of according structure and format. To persist data, like the service

repository, the personal repository of end-users' created widgets, or login and ac-

cess right information, the WCP is using an RDBMS.

On the client side, end-users access the user interface of the WCP by using a

web browser to call a certain URL. This simplified access to the WCP makes it

very easy for end-users to start with the development of individual widgets. With-

in the browser, widgets run based on a WCP runtime library implemented in Ja-

vaScript using common web standards. This enables a rendering of the widget and

providing full widget functionality inside the browser during the development

process. For deployment, the WCP is delivering a single file that contains the

widget packaged in the specific format required by the runtime environment.

In accordance with the widget stack described in the previous subsection,

widgets access the resources that are mashed up within the widget via wrapper

components. If service-enabled systems manage resources, wrapper components

can address the resources directly using standard web protocols. If legacy systems

that do not provide an API addressable using standard web protocols manage the

resources, wrapper components are assisted by wrapper services. Wrapper ser-

vices are deployed to a dedicated web application server and provide access to

legacy systems. In our particular setup, we implemented wrapper services to ac-

cess queries within not service-enabled versions of SAP ERP systems by encapsu-

lating SAP Remote Function Calls using SAP Java Connector, and execution of

queries expressed in Structured Query Language to RDBMS or Excel files using

Java Database Connectivity. This implementation option enables wrapper compo-

nents to access resources within such systems using simple web protocols, keeping

Figure 3: Architectural components of the Widget Composition Platform.

13

the needed technology on the client side as straightforward and lightweight as pos-

sible.

4.4 The User Interface of Widget Composition Platform

The WCP provides a browser-based user interface representing an integrated

development environment enabling the visual development of widgets without any

programming knowledge. Figure 4 shows a screenshot of the user interface.

We separated the user interface into several panes. On the left side, a list of all

services contained in the service repository is provided. The list groups services

according to their service types. Users can add services to a mashup, simply by

dragging and dropping the service to the design pane, located in the middle of the

interface. Besides services, additional design elements, like text boxes, can be

dragged from the upper right of the interface into the design pane. If a UI element

in the design pane is selected, its properties are visible and modifiable in a proper-

ties pane on the right. Properties that can be modified include visual properties

(such as color or font faces), but – more importantly – structural properties of ser-

vices. From the background pane at the bottom of the user interface, the user can

select a background image, enhancing the visual appearance of the created widget.

After adding services or design elements to the design pane, they are immediately

populated with live data and provide runtime interaction possibilities. All design

decisions create immediate effects, thus blurring design time and runtime and ena-

bling development close to a WYSIWYG manner, increasing the confidence of

the user in creating the desired results.

Figure 4: User Interface of the Widget Composition Platform.

14

In order to mashup services, a wiring has to be defined using a simple box and

wires. As depicted in Figure 5, services and other design elements offer input

ports and output ports that can be connected to define the wiring. Users can con-

nect elements by drawing a line, originating from an output port of a source ele-

ment to an input port of a target element. Whenever data in the source element

changes, the new data is pushed as input to the target element, which updates itself

accordingly. The update of data in target elements might again push new infor-

mation to dependent elements, which in turn might trigger updates. In the given

example, a service providing customer master data is connected to a service

providing sales order data. When selecting a customer in the customer table, the

connected sales order service is automatically updated to show only sales orders of

the selected customer. In the case of the depicted services, input ports correspond

to filters on table columns and output ports to the column values of the currently

selected row. In the given example, two text boxes are used to enable the user to

interactively define values that are pushed to services as input. The text box con-

nected to the customer data service restricts the shown customers according to the

given name pattern. The text box joined to the sales order service restricts shown

sales orders to such sales orders that have been received at or after a specific date.

In addition to text boxes, other design elements exist, that provide additional func-

tionality. Examples are design elements that use e-mail addresses or Skype names

as input and provide the ability to send an e-mail or establish a Skype call just by

clicking on an envelope or telephone symbol.

If a resource for the current mashup is missing in the service repository during

the creation process, an appropriate service can be defined using the "Create" op-

tion of the service pane. To define a service, the user needs to select the service

type (e.g. SAP ERP query) and then the resource that the service should encapsu-

late (e.g. by providing the SAP ERP system storing the query, and the name of the

query). After saving the service to the repository, it can instantly be used in the

mashup process.

At any point in time, the user can switch from the design time mode to a run-

time mode (design principle of direct activation, see Wulf & Golombek 2001).

Although the widget is fully functional even in design time mode, the run- time

mode hides all the visual elements that users only otherwise need at design time,

like input ports, output ports, or connections, and prevents modifications to the

widget. In this way, the widget is presented as it would appear if deployed to an

external widget engine. Widgets can be saved to and loaded from a personal widg-

et repository managed by the WCP. This functionality is accessible through the

"MyWidgets" pane on the left of the user interface. Using the "Deployments Op-

tion" pane, the system can deploy the widget to multiple widget runtime environ-

ments, like Yahoo!

Widget Engine (http://widgets.yahoo.com) or Microsoft Windows Vista Side-

bar (Lal, 2008).

15

When selecting deployment, the WCP is returning a single file, which can ei-

ther be directly opened and thereby gets deployed to the client-side widget engine

or saved as a file, which can easily be sent via e-mail or moved to a file share, to

share the widget with colleagues. Widgets that are deployed to a client-side widget

engine run independently of the WCP and are small, self-contained, interactive

applications.

5 Appropriation Study

5.1 Goals and Methods

The WCP environment designed for enabling business users to create custom

widgets was introduced in practice to explore whether business users in SMEs

would create widgets using the WCP and how they might appropriate the widgets

for addressing practical problems in real work contexts.

For this purpose, we have conducted two complementary studies in the three

German midsized companies in which we conducted the pre-study (interviews,

PDW). The first study considered use cases in practice. Its goal was to observe

how users adopt and use of the WCP to create widgets and services. The second

study conducted a questionnaire-based survey among the employees as potential

users of the WCP to get feedback from a broader user base on the proposed WCP-

based solution. In the following, we briefly present the qualitative study.

5.2 Evaluation through Use Cases in Practice

In this section, we first describe the setup of the practical evaluation of the

WCP and then the results of the use within SMEs through example use cases.

Setup of Evaluation in Practice. We deployed the WCP environment in the

three German SMEs. Among those, 50, 70 and 116 employees have access to the

SAP ERP system. 18, 60 and 70 employees use the SAP ERP system on a regular

base. In two of the three companies, the WCP was initially installed in cooperation

with the IT department, and in the third business, it was installed in collaboration

with the person responsible for IT concerns, as no dedicated IT department exist-

ed. After installation, the WCP could be used by every employee having access to

the internal network of the company.

In every business, one advanced end-user was nominated to be the contact per-

son, responsible for all concerns about the WCP. This person, in principle, acted

as an evangelist to promote the usage of the new technology, as well as provide

support to users if questions arise. In a first phase, the contact person was given an

introduction into the WCP and should experiment with it to get more familiar with

its concepts and usage. We defined five distinct services encapsulating SAP ERP

Figure 5: Wiring of services and design elements.

16

data as a starting point for experiments. The services provided ordinary data relat-

ed to customers, sales orders, and invoices. To increase the motivation for experi-

mentation, we included some appealing external services that users could access,

like a service for visualizing addresses on a map, a YouTube video service,

Google news, and a stock quote service. In a second phase, we discussed any

problem that might have arisen in the first one and provided help to solve these

problems. After that, we discussed potential use cases of widgets within the com-

pany with the contact person. In a third phase, we encouraged the contact person

to act as an evangelist and promote the usage of the WCP by approaching employ-

ees who might be interested in the discussed usages, giving them an introduction

to the WCP, and motivate them to explore. During the third phase, we conducted

accompanying interviews with the employees who were using the WCP for the

creation of individual widgets. Our aim was to investigate WCP's appropriation

and how end-users use the WCP and widgets to address practical problems.

Appropriating WCP and Widgets in Practice. In the following, we exempla-

rily discuss four instances which describe how business users appropriate widgets.

Case 1: Sales Support Widget. A staff member in the sales department of com-

pany A is in charge of answering questions from customers related to their orders.

Customers contact the employee by phone to get information related to the content

and status of their orders. Inquiries resulting from such calls might be questions as

to whether or not certain goods have been bought to fulfill a specific sales order,

or what the current state of the order's processing is, for example. To be able to

answer such questions, the sales officer has to access multiple locations inside the

GUI of the SAP ERP system. In a first step, the user needs to access the custom-

er's master data to identify him. In a second step, the user accesses sales order

header data to filter sales orders of the respective customer and the sales order in

question. In a third step, the individual items of the sales order are accessed to

track the ordered goods, the quantity, and their status. If the customer enquires

about items on multiple sales orders, the user needs to switch back and forth be-

tween the different sales order list and their details. The sales employee we talked

to considered incrementally gathering required information via the GUI by access-

ing multiple reports and switching back and forth between them to be rather cum-

bersome, especially since he has to access the information many times a day – fol-

lowing different calls.

The evangelist approached the sales staffer and introduced the WCP to them

and the staffer started to experiment with the WCP. Using the services we had de-

fined as standard demo services during installation, the employee was able to cre-

ate a suitable widget for his needs. The widget shows customer master data, sales

order header data, and sales order details as three distinct tables. Using text box UI

elements, the sales employee added filters for customers by name or customer

number, and filters on the order date of sales orders. He deployed the widget to his

desktop to make it readily available when customers required information. By us-

ing the filters based on customers' master data, a client can be uniquely identified

17

in a rapid and convenient way. By clicking on a customer in the table, all sales or-

ders of the buyer come up in another table, directly beneath the customer table.

The user then can restrict the visible sales orders to the ones ordered at or after a

specified date. By clicking on a sales order, all relevant details are shown in a

third table. The sales staff in question configured the tables to only show data rel-

evant to him, resulting in a compact overview providing required data at a glance.

To view details of other sales orders in question, the employee can now simply

click on the sales order in the sales order table.

The created widget is used by the sales staff some 40 times a day to answer

standard questions of customers related to their orders. As the user does not need

to access multiple tables/reports within the complicated GUI of the SAP ERP sys-

tem but gets all relevant data at a glance, he can answer standard customer inquir-

ies in approximately half the time compared to using the GUI of the SAP ERP

system. Because of this, the sales staff decided to send the widget via email to a

colleague who needs to access the same data occasionally. This employee had no

programming skills and was able to create a custom widget for supporting his in-

dividual working task within three hours after having seen the WCP for the first

time. He explained to us that experimenting with the WCP was fun for him. He

perceived the WCP to have an appealing user interface and the composition of

widgets to be simple, comprehensible and easy to learn.

Case 2: Material Lookup Widget. An employee in the procurement department

of company A needs to access certain information related to material many times a

day. For instance, he needs to identify a specific spare part by its material number

and finding out about the quantity currently in stock and the quantity already

scheduled for production. To get a first overview of the status of the spare part, the

employee could determine a rather fixed set of information which she considers to

be highly relevant for her work context. Similar to the previous case, this infor-

mation is widely spread within the GUI of the SAP ERP application and users

have to gather it in a cumbersome manner.

When the evangelist introduced this employee to the WCP, she immediately

thought of building a widget to tailor her standard data set of related information.

As predefined services that might deliver relevant data did not exist, the evangelist

discussed with the employee which data was needed. Then he searched for possi-

ble data sources like tables and queries within the ERP system. Building on a larg-

er query, the evangelist managed to create a SAP query joining five distinct tables

and providing most of the requested data. The query was wrapped as a service for

18

the WCP and was used by the user to create a suitable widget.

Figure 6: Screenshot of the material lookup widget in design mode

The widget is rather simply structured and consists simply of a text box and the

created service. The text box defines a filter on the material number to the service.

As the service just returns a single record, the results are not rendered as a table

with a single row, but as a list, showing all attributes of the record with according

values as rows. The user in this case configured the service to show only the most

relevant data and arranged all design elements neatly to create an appealing widg-

et. We also deployed the same widget on the PC of an employee working in the

raw material storage facility, who did not have direct access to live data from the

SAP ERP system before (due to SAP's license fees). By using the widget, he was

able to access the most critical data related to material in a very easy way, without

the need of having to learn and understand a complex enterprise system.

Case 3: Address Book Widget. All three businesses keep Excel sheets of em-

ployees and their contact data, like telephone, fax, and mobile phone numbers, e-

mail addresses and departmental affiliation. Staffers distribute these sheets via

email among themselves. To have this list readily available, employees tend to

keep the latest version of it in designated folders on their PCs or print it out.

To improve on this process, the WCP evangelists in all three firms inde-

pendently developed an address book widget. The evangelists took the data from

the existing Excel sheets which they copied on network shares and integrated into

the WCP as a service. Figure 7 shows two examples of the address book widget

from two different companies.

19

Figure 7: Screenshots of two of the three address book widgets.

The left widget allows users to search for employees by name. The search re-

sults are presented one at a time and can be navigated using a "back" and a "for-

ward" button. E-mail addresses are clickable links. The right widget uses a table to

display the first 20 search results. In this widget, employees can not only be

searched by name but also by departmental affiliation. The WCP evangelist shared

the widgets using e-mail. These e-mails also contained links to the Yahoo! Widget

Engine, which allowed staffers to use the widget directly on their desktops, with-

out a web browser. The Yahoo! Widget Engine also enabled users to set a hotkey

for the widget.

The widget was adopted quickly in all three firms, and users liked its handi-

ness. An employee in company A remarked: "The address list was a good idea; it

is something practical. [...] Everyone can make good use of that [...]. Otherwise, I

would have to look for slips of paper."

The address book widget was widely used and distributed in the three business-

es and therefore was the first contact many staffers had with WCP and widgets in

general. It stirred interest in WCP and introduced employees to the idea of widgets

which can be created, modified and used by end-users.

Case 4: Birthday widget. The birthday widget shows how users can appropriate

widgets to their needs through modification and adaptation. Staffer X in the quali-

ty assurance department of company B received the address book widget via e-

mail. He then asked the local WCP evangelist about creating such widgets him-

self. The local evangelist then introduced WCP to staffer X. As staffer X kept a

list of his colleagues’ birthdays in an Excel sheet, he decided to adopt the address

book widget so it can be used to keep track of his colleagues birthdays. To archive

this, the staffer copied the existing address book Excel sheet and added a column

with the birthday information. Employee X then made this copy available in WCP

creating a service. He completed this task without problems by using the existing

address book service as guidance. Then he made a copy of the address book widg-

et and modified it. The staffer changed the data source to the newly created ser-

20

vice, added a text field for filtering the list by the date or date range. He also

changed the layout and added labels to the new UI element. The resulting widget

is shown in figure 8.

Figure 8: Screenshot of the birthday widget.

The staffer sent his widget to about ten of his colleagues, which in turn sent it

to more co-workers. The widget became quite popular in the company and is jok-

ingly referred to as "lunch optimizer", as many employees use it to check if there

is a birthday celebration with some snacks or cake in which case they hold back

on lunch.

Collaboration. In the evaluation, we identified three main types of users who

collaborated in different ways:

1) Very advanced users (mainly evangelists who have the technical knowledge

to create data sources and services), who helped other users to understand and use

the application.

2) Key users, who often identified fields of application where the use of widg-

ets would make sense. They came up with ideas for new widgets and implemented

them by combining existing services. If these services did not exist yet, they creat-

ed them in collaboration with the advanced users. Key users also distributed the

widgets to other end users.

3) Other users, who were mainly widget-consumers, and who only used and

shared widgets. They did not create or modify widgets but gave suggestions for

improvements to the widget creators.

21

6 Conclusion

In this chapter, we presented a design case study from the domain of End User

Development. The WCP environment enables business users to create enterprise

widgets for their personal information needs. The design approach, i.e., the web-

based environment WCP, enables business users (a) to mash up enterprise re-

sources in a visual design environment in a lightweight way using a simple box

and wires configuration technique and (b) to deploy the created mashups in the

form of widgets to their local machines. In our case, these new functionalities for

creating custom widgets allowed business stuff to create small, interactive applica-

tions to display relevant data in a fast and convenient way, without the need of

starting heavyweight and complex enterprise systems and cumbersomely collect

data from multiple locations. Additionally, advanced users can now create new

services to be mashed up within the WCP by creating and wrapping related re-

sources within enterprise systems.

Our approach to the development of the WCP follows the design case study

approach. We first presented the results of empirical investigations in real enter-

prise contexts, which we conducted in order to understand the practical problems

and the pressing needs of users when working with ERP systems. Next, we de-

scribed the prototyping leading to the WCP. We explain its basic concepts, the ar-

chitectural components, and how they work together. We also explained how

business users can create individual mashups of enterprise resources using the box

and wires tailoring metaphor, and how the tailored mashups can be deployed and

exchanged as widgets on the local computers of the users. Finally, we describe

how end-users appropriated the WCP in three German SMEs. Supported by a lo-

cal expert, the office workers were able to build mash-ups which assembled tables

in such a manner that their search for data from the ERP system was considerably

eased. So, the WCP enabled business users to tailor custom widgets supporting

their individual work tasks.

Beyond this, we have learned from our observation of the widgets' use in three

different organizational contexts that the appropriation of WCP is a collective en-

deavor (cf. Nardi 1883; Wulf 1999; Kahler 2001; Pipek and Kahler 2006). Based

on our observations, it makes sense to distinguish between three different types of

users, widget consumers, widget creators, and service creators.

 Widget consumers are only applying widgets but do not create them.

These users are typically less familiar with IT in general or show less

of a willingness, at least at the moment, to engage in tailoring. They

receive widgets from more experienced colleagues and use them to

access data in an easy and comfortable way without the need of learn-

ing and understanding one or more complex information systems

(Nardi 1993; Wulf 1999; Kahler 2001; Wulf et al 2008). The value of

widgets for this type of users is that it allows them to efficiently access

the relevant information without the need to ask colleagues.

22

 Widget creators are users that create widgets for themselves or others

to support individual working tasks. They are motivated by multiple

reasons, including the need to simplify data access for their working

tasks or to provide others with specially tailored widgets. This im-

proves data supply to others engaged in the same business processes.

Providing better tools in support of their work practice is especially

relevant for staffers that are responsible for certain processes and mo-

tivated to act as widget creators to optimize these processes and im-

prove process performance.

 Service creators are advanced users that can create new resources that

can be wrapped and added to the service repository, from where they

can be used for widget creation. By extending the service repository

with new services, they enable widget creators to address more use

cases and create more and more precisely tailored widgets. Without

service creators, widget creators would be limited to a certain set of

predefined services which restricts the number of creatable solutions.

Concerning the WCP environment, service creators are end-users hav-

ing the skills of creating, modifying or at least locating suitable que-

ries inside the SAP ERP system that match existing information needs

of widget creators.

Overall, our research contributed to the field of End-User Development by

providing the WCP environment, which enables business users to create simple

software artifacts like widgets and to address practical problems in real enterprise

work contexts. The study has also shown hot the design case study approach can

be used to design and develop a usable and useful EUD environment. The ap-

proach allowed us to (1) analyze and document the work practices in the three

companies, (2) develop a software system which supports these practices and (3)

observe use, appropriation, and tailoring of this application in the different com-

panies through various users. From this analysis and observation, we provide indi-

cations that by enabling SMEs to create enterprise resources using existing

knowledge and wrapping these resources as building blocks, the whole develop-

ment chain of software artifacts can be put in the hands of SMEs. This shift

would reduce the need for external IT professionals and at the same time increase

flexibility in adapting the used software infrastructure to emerging individual

needs.

7 Acknowledgments

The research presented here was funded by the German Federal Ministry of

Education and Research (BMBF) as part of project EUDISMES (number

01ISE03C).

23

8 References

Albinola, M./Baresi, L./Carcano, M./Guinea, S. (2009): Mashlight: a Light-

weight Mashup Framework for Everyone. In: Proceedings of 2nd Workshop on

Mashups, Enterprise Mashups and Lightweight Composition on the Web (MEM

2009). Madrid, Spain, 20.04.2009.

Ardito, C., Costabile, M., Desolda, G., Lanzilotti, R., Matera, M., Piccinno, A.,

& Picozzi, M. (2014). User-driven visual composition of service-based interactive

spaces. Journal of Visual Languages & Computing, 25(4), 278–296. Elsevier.

Aumüller, D./Thor, A. (2008): Mashup-Werkzeuge zur Ad-hoc Datenintegrati-

on im Web. In: Datenbank-Spektrum, 8(26), S. 4-10.

Boden, A.; Dörner, C.; Draxler, S.; Pipek, S.; Stevens, G.; Wulf, V. (2014):

Tangible and screen-based interfaces for End-user Workflow Modeling, in: IEEE

Software, Vol. 31, Nr. 4, 65-71

Brehm, L., Heinzl, A., Markus, M.L. (2001): Tailoring ERP Systems: A Spec-

trum of Choices and their Implications. In: 34th Annual Hawaii International Con-

ference on System Sciences (HICSS-34). IEEE (2001)

Caceres, M.: Widgets 1.0 Requirements. W3C Working Draft. W3C (2008)

Carter, K.; Henderson, A.: Tailoring Culture In: Hellman, R.; Ruohonen, M.;

Sorgard, P. (eds): Proceedings of the 13th IRIS, Reports on Computer Science and

Mathematics, No. 107, Abo Akademi University 1990, pp. 103–116.

Davis, F.D. (1986): A Technology Acceptance Model for empirically testing

new End-User Information Systems: Theory and Results. PhD thesis, Sloan

School of Management, Massachusetts Institute of Technology, Cambridge, MA,

USA (1986).

Davis, F.D. (1989): Perceived Usefulness, perceived Ease of Use, and User

Acceptance of Information Technology. MIS Quarterly 13, 319 - 340 (1989).

Desolda, G., Ardito, C., & Matera, M. (2016). EFESTO: A Platform for the

End-User Development of Interactive Workspaces for Data Exploration. In Rapid

Mashup Development Tools (pp. 63-81). Springer International Publishing.

Dörner, C.; Draxler, S.; Pipek, V.; Wulf, V. (2009): End-Users at the Bazaar –

Designing the next Generation of ERP Systems, in: IEEE Software, Vol. 26, No.

5, 45 - 51

Dörner, C; Yetim, F.; Pipek, V.; Wulf, V. (2011). Supporting Business users in

Tailoring Business Processes. Interacting with Computers 23 (3), 226-238.

Ennals, R. J., & Garofalakis, M. N. (2007, June). MashMaker: mashups for the

masses. In Proceedings of the 2007 ACM SIGMOD international conference on

Management of data (pp. 1116-1118). ACM.

Erl, T. (2005): Service-oriented Architecture: Concepts, Technology, and De-

sign. Prentice Hall (2005).

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A.G., Mehandjiev, N., 2004. Meta-

design: a manifesto for end-user development. Communications of the ACM 47,

33–37.

Gartner (2007): http://www.gartner.com/newsroom/id/530109.

24

Henderson, A.; Kyng, M.: There's No Place Like Home: Continuing Design in

Use. In Design At Work - Cooperative Design of Computer Artefacts, J. Green-

baum and M. Kyng, Eds. Hillsdale, New Jersey: Lawrence Erlbaum Associates,

Publishers, 1991, pp. 219-240.

Gurram, R., Mo, B., & Gueldemeister, R. (2008, September). A web based

mashup platform for enterprise 2.0. In International Conference on Web Infor-

mation Systems Engineering (pp. 144-151). Springer Berlin Heidelberg.

Hess, J.; Reuter, C.; Pipek, V.; Wulf, V. (2012): Supporting End-User Articula-

tions in Evolving Business Processes: A Case Study to Explore Intuitive Notations

and Interaction Designs, in: International Journal on Cooperative Information Sys-

tems (IJCIS), Vol. 21, No 4, 263-296

Hoyer, V., & Fischer, M. (2008, December). Market overview of enterprise

mashup tools. In International Conference on Service-Oriented Computing (pp.

708-721). Springer Berlin Heidelberg.

Hoyer, V., & Stanoevska-Slabeva, K. (2008, December). The changing role of

it departments in enterprise mashup environments. In International Conference on

Service-Oriented Computing (pp. 148-154). Springer Berlin Heidelberg.

Kahler, H.: Supporting Collaborative Tailoring, Ph.D. Thesis, Roskilde Univer-

sity, Denmark, Roskilde, 2001.

Koschmider, A., Torres, V., & Pelechano, V. (2009, April). Elucidating the

mashup hype: Definition, challenges, methodical guide and tools for mashups. In

Proceedings of the 2nd Workshop on Mashups, Enterprise Mashups and Light-

weight Composition on the Web at WWW (pp. 1-9).

Kvale, S.: Interviews: An Introduction to Qualitative Research Interviewing.

Sage Publications (1996).

Lal, R. (2008). Creating Vista Gadgets. Sams.

Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., & Morbidoni, C.

(2009, April). Rapid prototyping of semantic mash-ups through semantic web

pipes. In Proceedings of the 18th international conference on World wide web (pp.

581-590). ACM.

Mackay, W.E.: Users and customizable Software: A Co-Adaptive Phenome-

non, PhD Thesis, MIT, Boston (MA), 1990.

MacLean, A., Carter, K., Lövstrand, L., Moran, T. (1990). User-tailorable Sys-

tems: Pressing the Is- sues with Buttons. In: SIGCHI Conference on Human Fac-

tors in Computing Systems (CHI ’90), 175--182. ACM (1990).

Markus, M.L., Tanis, C. (2000): The Enterprise System Experience: From

Adoption to Success. In: Zmud, R.W. (ed.): Framing the Domains of IT Research:

Glimpsing the Future through the Past, pp. 173--207. Pinnaflex (2000)

Muller, M.J. (2003): Participatory Design: The third Space in HCI. In: The

Human-Computer Interaction Handbook: Fundamentals, evolving Technologies

and emerging Applications, pp. 1051--1068. Erlbaum (2003).

Nardi, B.: A Small Matter of Programming: Perspectives of End User Compu-

ting, MIT Press

25

Pane, J. F., Ratanamahatana, C. A. and Myers, B. A. (2001). Studying the Lan-

guage and Structure in Non-Programmers' Solutions to Programming Problems.

International Journal of Human-Computer Studies, 54 (2), pp. 237-264.

Pipek, V. (2005): From tailoring to appropriation support: Negotiating group-

ware usage, PhD Thesis, University of Oulu

Pipek, V. and Wulf, V. (2009): Infrastructuring: Towards an integrated per-

spective on the design and use of information technology. Journal of the Associa-

tion for Information Systems (JAIS), Special Issue on e-Infrastructures 10 (5), pp.

306-332.

Roth, A., Scheidl, S. (2006). End-User Development for Enterprise Resource

Planning Systems. In: Informatik 2006, pp. 596--599. GI (2006).

Soriano, J.,Lizcano, D.,Cañas, M,/Reyes, M., Hierro, J. (2007): Foster Innova-

tion in a Mashup-oriented Enterprise 2.0 Collaboration Environment. In: System

and Information Sciences Notes, 1(1), S. 62-68.

Spahn, M., Dörner, C., Wulf, V. (2008a): End User Development: Approaches

towards a flexible Software Design. In: 16th European Conference on Information

Systems (ECIS 2008), pp. 303--314. CISC (2008).

Spahn, M., Dörner, C., Wulf, V. (2008b): End User Development of Infor-

mation Artefacts: A Design Challenge for Enterprise Systems. In: 16th European

Conference on Information Systems (ECIS 2008), pp. 482--493. CISC (2008)

Spahn, M., Kleb, J., Grimm, S., Scheidl, S. (2008c): Supporting Business Intel-

ligence by Providing Ontology-based End-User Information Self-Service. In: 1st

International Workshop on Ontology-supported Business Intelligence (OBI 2008).

ACM (2008)

Spahn, M.; Wulf, V. (2009): End-User Development of Enterprise Widgets. In:

de Ruyter, B.; Pipek, V.; Rosson, M. B.; Wulf, V. (eds.): Proceedings of the Sec-

ond International Symposium on End User Development (IS-EUD 2009), Spring-

er, LNCS, Heidelberg

Spahn, M. (2010). Flexibilisierung und Individualisierung des betrieblichen In-

formationsmanagements durch End-User Development, PhD Thesis,, University

of Siegen, Department of Information Systems

Stevens, G.; Pipek, V.; Wulf, V. (2010): Appropriation Infrastructure: Mediat-

ing Appropriation and Production Work, in: Journal of Organizational and End

User Computing (JOEUC), Vol. 22, Issue 2, 58-81

Tuchinda, R., Szekely, P., & Knoblock, C. A. (2008, January). Building

mashups by example. In Proceedings of the 13th international conference on Intel-

ligent user interfaces (pp. 139-148). ACM.

Wong, J. (2007, September). Marmite: Towards end-user programming for the

web. In IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC 2007) (pp. 270-271). IEEE.

Wulf, V.: “Let's see your Search-Tool!” - Collaborative use of Tailored Arti-

facts in Groupware. In: Proceedings of GROUP '99, ACM-Press, New York,

1999, pp. 50-60.

26

Wulf, V.; Rohde, M.: Towards an Integrated Organization and Technology De-

velopment. In: Proceedings of the Symposium on Designing Interactive Systems,

23. - 25.8.1995, Ann Arbor (Michigan), ACM-Press, New York 1995, pp. 55-64

Wulf, V., Rohde, M., Pipek, V., & Stevens, G. (2011, March). Engaging with

practices: design case studies as a research framework in CSCW. In Proceedings

of the ACM 2011 conference on Computer supported cooperative work (pp. 505-

512). ACM.

Wulf, V.; Jarke, M.: The Economics of End User Development, in: Communi-

cations of the ACM (CACM), Vol. 47, No. 9, 2004, S. 41 - 42

Wulf, V., Pipek, V., Won, M. (2005): Component-based Tailorability: Towards

highly flexible Software Applications. IJHCS 66, 1--22 (2008)

Yetim, F.; Dörner, C.; Pipek, V. (2010). Unterstützung von Softwareanpassun-

gen in Kleinen und Mittelständischen Unternehmen: Wege zu einer Anpassungs-

kultur. i-Com - Zeitschrift für interaktive und Kooperative Medien 9(2) 2010, S.

31-37.

Yetim, F.; Draxler, S.; Stevens, G.; Wulf, V. (2012). Fostering Continuous Us-

er Participation by Embedding a Communication Support Tool in User Interfaces.

AIS Transactions on Human-Computer Interaction 4 (2), 152-167.

Yu, J., Benatallah, B., Casati, F., & Daniel, F. (2008). Understanding mashup

development. IEEE Internet computing, 12(5), 44-52.

