
Int. J. Human-Computer Studies 66 (2008) 1–22

Component-based tailorability: Enabling highly flexible
software applications

Volker Wulfa,b,!, Volkmar Pipeka, Markus Wonc

aInstitute for Information Systems, University of Siegen, Hölderlinstr. 3, 57068 Siegen, Germany
bFraunhofer Institute for Applied Computer Science (FhG-FIT), Schloss Birlinghoven, 53754 Sankt Augustin, Germany

cInternational Institute for Socio-Informatics (IISI), Stiftsgasse 25, 53111 Bonn, Germany

Received 6 October 2004; received in revised form 28 August 2007; accepted 29 August 2007
Communicated by M.B. Rosson

Available online 14 September 2007

Abstract

Component technologies are perceived as an important means to keep software architectures flexible. Flexibility offered by component
technologies typically addresses software developers at design time. However, the design of software which should support social
systems, such as work groups or communities, also demands ‘use-time’, or technically spoken, ‘run-time’ flexibility. In this paper, we
summarize a decade of research efforts on component-based approaches to flexibilize groupware applications at run-time. We address
the user as a ‘casual programmer’ who develops and individualizes software for his work context. To deal with the challenges of run-time
flexibility, we developed a design approach which covers three levels: software architecture, user interface, and collaboration support.
With regard to the software architecture, a component model, called FLEXIBEANS, has been developed. The FREEVOLVE platform serves as
an environment in which component-based applications can be tailored at run-time. Additionally, we have developed three different
types of graphical user interfaces, enabling users to tailor their applications by recomposing components. To enable collaborative
tailoring activities, we have integrated functions that allow sharing component structures among users. We also present different types of
support techniques which are integrated into the user interface in order to enable users’ individual and collaborative tailoring activities.
We conclude by elaborating on the notion of ‘software infrastructure’ which offers a holistic approach to support design activities of
professional and non-professional programmers.
r 2007 Elsevier Ltd. All rights reserved.

Keywords: Tailorability; End user development; Component-based systems; CSCW

1. Introduction

The need for flexible software systems is well known and
well addressed in the research areas of software engineer-
ing. Driven by the need to be more efficient in software
development, the approaches worked towards a better
reuse of code and an increased comprehensiveness of
software architectures (e.g. object-oriented programming,
component-based systems, and lately service-oriented
architectures). In the research area of computer-supported

cooperative work (CSCW), the driving force of flexibiliza-
tion is a different one: software needs to be flexible in order
to be adapted to new or changing work situations in its
context of use. As a matter of fact, end users, not
professional designers, typically take action to adapt their
software applications according to the everyday routines
and problems they encounter. Tools, techniques and
methods that have been developed to make an evolutionary
software engineering process more efficient, usually do not
consider this ‘end-user’ aspect. Component-based technol-
ogies have gained considerable attention in this context
(cf. e.g. Szyperski, 2002), since they offer ‘black box’
reusability (Ravichandran and Rothenberger, 2003) by
making the integration of third-party components possible
without having to know or manipulate their code.

ARTICLE IN PRESS

www.elsevier.com/locate/ijhcs

1071-5819/$ - see front matter r 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijhcs.2007.08.007

!Corresponding author. Institute for Information Systems, University
of Siegen, Hölderlinstr. 3, 57068 Siegen, Germany. Fax: +49 271 740 3384.

E-mail addresses: volker.wulf@uni-siegen.de (V. Wulf),
volkmar.pipek@uni-siegen.de (V. Pipek), won@iisi.de (M. Won).

mailto:won@iisi.de
file://localhost/Users/vpipek/Downloads/www.elsevier.com/locater/ijhcs
file://localhost/Users/vpipek/Downloads/dx.doi.org/10.1016/j.ijhcs.2007.08.007
mailto:volker.wulf@uni-siegen.de
mailto:volkmar.pipek@uni-siegen.de

Empirical studies confirmed that end users consider
replacing software rather than re-programming it (e.g.
Robertson, 1998). Component-based systems offer both
ways of re-designing software, replacing as well as
reprogramming, during use-time. Therefore, they can be
seen as an interesting starting point to support end-user-
oriented tailoring of software applications.

Flexibility of software artifacts has been a major
research issue in human–computer interaction (HCI), from
its beginnings. Since the individual abilities of specific users
are diverse and develop constantly, suitability for indivi-
dualization is an important principle for the design of the
dialogue interface. In general, users were supposed to
adapt the software artifacts according to their abilities and
requirements (cf. Ackermann and Ulich, 1987; Fischer
et al., 1987; Fischer and Girgensohn, 1990; ISO-9241,
1999). However, the scope of flexibility offered in early
implementations was usually limited to simple parameter-
ization of the dialogue interface. While this line of thought
gave the users of software artifacts a more active role for
the first time, it remained a problem to address change
requests, requiring a deeper manipulation of the software
artifact and higher levels of use-time flexibility.

Starting in the late 1980s, industrial demands, resulting
from the diffusion of personal computers into organiza-
tions and the emergence of computer networks, led to
research efforts to provide flexible information systems
that offered a functionality for cooperation and collabora-
tion modifiable by their users. While prior work aimed at
the individual user, it was now a user group, an
organization, or other social entities that needed flexibility
in order to adopt computers for cooperative work
(cf. Lieberman et al., 2006). Henderson and Kyng (1991)
worked out the concept of tailorability to name these
activities, and stressed the importance of being able to re-
design and re-develop software during and/or in the
context of use. Software artifacts and commercial pro-
ducts, as well as research prototypes with a tailorable
functionality, have been developed. Regarding commercial
products, spreadsheets and CAD systems were explored
first. ‘‘Buttons’’ was one of the first highly tailorable
research prototypes, where users could change the dialogue
interface and functionality on different levels of complexity
(MacLean et al., 1990). With the emergence of network
applications, supporting collaborative activities such as
communication, cooperation or knowledge exchange, the
need for tailorable software artifacts increased (Schmidt,
1991; Bentley and Dourish, 1995; Wulf and Rohde, 1995).
However, the distributed nature of these systems and the
potential interdependencies of individual activities have
posed additional challenges to the design of tailorable
applications (cf. Oberquelle, 1993, 1994; Wulf et al., 1999;
Stiemerling, 2000; Won et al., 2006).

In this paper, we summarize the results of a decade of
research in flexibilizing groupware by means of compo-
nent-based tailorability. We propose a conceptual frame-
work to identify different levels of design challenges. Based

on this framework, we present the different aspects of our
work. Drawing on the notion of ‘software infrastructure’,
we conclude by proposing design guidelines for tailorable
applications.

2. A framework to study tailorability

Empirical as well as design-oriented research has
indicated two major challenges in building tailorable
systems (Mackay, 1990; MacLean et al., 1990; Nardi,
1993; Oppermann and Simm, 1994; Page et al., 1996; Wulf
and Golombek, 2001a). The first challenge was to support
re-design during use, and the second, to allow end users
within their use contexts to take a leading role in re-
designing their infrastructures. In particular, for the second
challenge, important refinements have been described as:

! Support for tailoring on different levels of complexity:
MacLean et al. (1990) have already pointed out the
problem that a considerable improvement of users’ skills
is required when tailoring a software artifact goes
beyond simple parameterization. They called this the
‘customization gulf’. Beyond simple parameterization,
profound system knowledge and programming skills
would be required normally. Therefore, tailorable
applications should offer a gentle slope of increasing
the perceived complexity of tailoring architectures and
interfaces to stimulate learning. Providing different levels
of tailoring complexity could also tackle the problem of
divergent skill levels among the users, a strategy or
affordance for learning complex tasks that has been
suggested earlier (Burton et al., 1984; Beringer, 2004).

! Support for cooperative tailoring: Empirical research
indicates that tailoring activities are typically carried out
collaboratively (Mackay, 1990; Nardi, 1993; Wulf and
Golombek, 2001a). Users with less technical skills or
motivation delegate part of the tailoring activity to local
system administrators, power users1 or gardeners that
possess higher levels of technological skills, and benefit
from receiving advice or reusing tailored artifacts
created by more knowledgeable users.

We developed a framework to capture all relevant
aspects (cf. Fig. 1), which will also guide our presentation
of nearly a decade of research regarding these issues. In our
perspective from the field of CSCW, tailorability is the
characteristic of software offering end users manageable
software flexibility at run-time/use-time. We distinguish
three dimensions of addressing this challenge:

! Architectural level: The technological foundation of all
efforts is the availability of an architectural flexibility
that allows addressing different complexities of use-time

ARTICLE IN PRESS

1Very experienced users who are not IT professionals (i.e. computer
scientists) and who do not have any programming experience are here
referred to as power users.

V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–222

manipulations of the software artifact. While the
maximum flexibility could be provided by using a
publicly available source code, we are looking for a
more pragmatic flexibility that respects the needs of the
end users as ‘casual programmers’ and their work
context at use-time (see Section 3).

! Interface level: End users as ‘casual programmers’ with
very heterogeneous skills need specific support at the
interface level. While simplifying programming tasks by
providing appropriate interfaces has been addressed
earlier, e.g. in research about ‘Visual Programming’,
specific challenges result from the right abstraction level
and granularity of concepts for an efficient re-design
during use (cf. Section 4).

! Collaborative level: A community of non-professional
programmers with potentially very diverse capabilities,
motivations, and resources need technical support to
share tailored artifacts. While different types of reposi-
tories support programmers to share source code and
software modules, we assume that end users will have
specific requirements.

Professional software designers focus on the implemen-
tation of a given specification, based on skills gained by
education and training. In contrast, for a group of
heterogeneously skilled end users who are designing-in-
use, processes of understanding technologies, making
sense of technologies, negotiating technology usage, and
delegating and managing configuration work become a
critical factor.

For every level, we discuss existing ideas against the two
core challenges mentioned above, and suggest new
approaches to develop and experiment with. We describe
and connect experiences regarding a number of prototypes
we have developed. All prototypes have been evaluated
either in laboratory studies or in real use settings, but
always with real end users from different organizations.
About 80 end users from five organizations were involved
in these studies, complemented with heuristic evaluation
methods (Nielsen, 1993); in particular Thinking Aloud
(Lewis, 1982) and Constructive Interaction (Kahler, 2000)

as well as ethnographic methods (Blomberg et al., 1993)
were applied. For those prototypes that we were able to
evaluate in real world settings, we used questionnaires and
semi-structured interviews to collect user feedback. For
details on the evaluation of individual prototypes, we have
to refer the reader to the publications dealing with the
respective prototypes.
The purpose of this paper is to connect different research

efforts in order to outline the dynamics and problems of
providing tailorability for end users. While many of the
individual research efforts have been published before, we
now focus on the relations of this research on the levels
described above, and on the remaining challenges. In
general, we emphasize those aspects that do not have a
strong correlation with classical software engineering
approaches. We begin with describing the architectural
level and the component-based tailoring platform FREE-
VOLVE, and then proceed to the interface level to describe
end-user-oriented solutions to more specific problems.
Next, we describe and discuss our experiences regarding
cooperative tailoring, and finally, we will elaborate on
overarching issues and further challenges.

3. Architectural level: component-based systems

To some extent, the discussion on component technol-
ogies in software engineering and the discussion on
tailorable software artifacts in CSCW have a similar
motivation: the differentiation and dynamics of the context
in which software artifacts are applied. However, software
engineering directs its attention towards the support of
professional software developers during design time, while
the concept of tailorability directs its attention towards
users during run-time. In Section 1, we already made some
points explaining why it is plausible to use component-
based systems as a starting point for highly tailorable
software applications. We now begin with describing our
understanding of component-based systems, and then
discuss flexibilization research from the field of CSCW to
later attain some requirements for our work. In the final
section of our coverage of the architectural level, we

ARTICLE IN PRESS

Challenge:
Re-Design
during Use

Solution: Manageable
Software Flexibility

Collaborative
Level

Interface
Level

Architectural
Level

Challenge:
End Users as

Designers

Fig. 1. End-user-oriented tailorability framework.

V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–22 3

describe how we overcame two specific problems by
developing the FREEVOLVE platform as a basis for our
work on component-based tailorability: the problem of
component structures that are lost at run-time (use-time),
and the problem of improving component intelligibility.

3.1. Basic concepts of component-based systems

The term ‘‘component’’ is not used very consistently
within the software engineering community. We refer
conceptually to Szyperski’s (2002) notion of components.
He gives the following definition:

A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be
deployed independently and is subject to composition
by third parties (Szyperski, 2002, p. 41).

This idea of accelerating (re-)design by reusing mod-
ulized code was already discussed in the beginning of the
software engineering discourse (McIlroy, 1968). Szyperski
(2002) emphasizes the economic potentials of collaborative
and distributed software engineering processes. Compo-
nent technology allows applying the same software module
in different artifacts (polymorphic composition). Modules
need to be defined independently of each other. Their state
can only be manipulated by interactions via well-defined
interfaces. In this way, the developers who integrate an
external component can access its services without under-
standing its implementation details. The visibility of a
component’s implementation may reach from black boxing
(no visibility of the internal source code) to white boxing
(full access to the internal code) with different levels of gray
boxing (access to parts of the internal code).

This understanding of component technology has the
potential to serve as a basis for the design of highly
tailorable systems. Beyond parameterization and repro-
gramming, the composition of components provides a
middle layer for the development of a gentle slope of
tailoring complexity at an architectural level. Gray boxing
also addresses the challenge of modeling nested component
structures that provide additional potentials for differen-
tiated complexity. Component-based architectures also
help to address issues at other levels when dealing with
flexibility: the strong encapsulation that the component
concept provides can be helpful on the collaborative level,
where end users should be supported in exchanging their
tailored components. At the interface level, visualization
concepts that aim at making architectural concepts under-
standable to end users may benefit from the diversity that
gray boxing provides.

In software engineering research, there are many
environments which allow modifying or composing com-
ponents at design time. They usually generate applications
that are monolithic after being compiled. For instance, in
Visual Age for Java (IBM, 1998) or Visual Basic
(Microsoft, 1996), the component metaphor is not percei-

vable at run-time unless it was anticipated and implemen-
ted by the designers.
However, there are component-based approaches which

inspired our own work: the DARWIN system (Magee et al.,
1995), for example, is based on a component model that
emphasizes the need for comprehensive gray boxing
with a typed event-based interaction and hierarchical
compositions. A process-oriented component enactment
guarantees a certain level of flexibility during use. How-
ever, the system was intended to be used by trained
administrators. Our motivation to address the needs of end
users leads us to specifically focus on the comprehensive-
ness and the functional granularity provided by component
architectures.

3.2. CSCW research on component-based tailorability

The area of CSCW includes research about concepts of
and experiences with the development of groupware
systems.2 Here, we obtained our requirements for a
component-based approach to tailoring. We now discuss
a number of approaches for highly flexible groupware
architectures that have been developed.
In the technology-oriented branch of CSCW research,

tailorability is an important field of research. The Oval
System (Malone et al., 1992) was one of the earliest
approaches designed for use-time manipulation by end
users. The main idea of Oval was to provide only four types
of software modules (Objects, Views, Agents, and Links)
that can be used for building groupware applications.
While the composition of these modules provides some
functionality, it is not sufficiently fine-grained to allow
building new applications without system-level program-
ming. PROSPERO (Dourish, 1996) was an object-oriented
framework that could be used to compose groupware
applications. It offered a number of technological abstrac-
tions of functionality for collaboration (e.g. converging
and diverging streams of cooperative work) developers
could use to rapidly develop an application. PROSPERO

addressed the concerns of developers of groupware
systems, but it did not aim at enabling end users to tailor.
DCWPL (Describing Collaborative Work Programming
Language; Cortes, 1999) was a framework that allowed
separating computational and coordination issues in the
implementation of groupware applications. The computa-
tional modules were connected using coordinating modules
that implemented the multi-user aspects of an application,
and were described in a DCWPL file. Several language
constructs could be used to describe session management,
awareness support, etc. As DCWPL files were interpreted
during run-time, tailoring was possible by changing this
code. Like PROSPERO, DCWPL did not offer a tailoring
environment directed at users with little programming
experience. In the TACTS framework, Teege (2000) worked

ARTICLE IN PRESS

2We denote the research field as CSCW while we use the term
‘groupware’ to refer to software applications in that field.

V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–224

out the idea of ‘feature-based composition’ applied to tailor
groupware. By adding a feature to a given software module,
the functionality of an application could be changed during
run-time. In his approach, the underlying architecture only
provided two basic communication styles: a broadcast
communication to all components and a direct connection
between two components. The architecture remained open
concerning the structure of the messages sent between
components. As a result, all semantics had to be defined
within the scope of the communicating components. Wang
and Haake (2000) presented CHIPS, a hypermedia-based
CSCW toolkit with elaborated abstraction concepts (role
models, process models, cooperation modes, etc.) in a three-
level modeling scheme (meta-model, model and instance),
which allowed users to describe and tailor their cooperation
scenarios. Generally, the system is based on an open
hyperlink structure and is extendable on every modeling
level in order to support every possible cooperation
scenario. Wang and Haake (2000) focused on the notion
of tailoring as a collaborative activity by using the meta-
model to give the collaboration a reference framework to
integrate it with the level of actual work.

In these systems and approaches, the authors have
emphasized the following benefits:

! they implemented reusable and sharable structures,
! they preferred a building/construction metaphor over

the ‘text’ metaphor of ordinary code,
! it was (with a varying intensity over the approaches) easy

to group and re-group functionality at any time, and
! they defined ‘building entities’ as well as the data flows

among them.

These considerations resemble what component-based
systems offer at a deeper architectural level. While these
approaches also render a component-based approach
plausible, there are also some particularities that are not
necessarily related to a component-based approach:

! the implementation of domain-oriented building blocks
and representations (e.g. Oval; also Fischer and
Girgensohn (1990) for a single-user application),

! the implementation of meta-models that guide tailoring
(e.g. CHIPS), and

! a defined but flexible component communication (e.g.
TACTS).

These aspects reveal that the authors of these concepts
aimed at aligning structures at the ‘interface layer’ with the
‘architectural’ building block structures of the groupware
applications. The successful implementation of these
approaches and the encouraging impulses from the CSCW
literature lead us to consider this as an important additional
requirement for building highly tailorable systems.

In our research towards a component-based approach to
tailorability, we aimed at combining concepts and experi-
ences from both worlds: Software Engineering and CSCW.

The concepts should provide a well-founded basis for re-
use, encapsulation and composition, as well as implemen-
tational flexibility to provide end-user-oriented interfaces.
There are obvious convergences in the ideas and ap-
proaches of flexibilization research in CSCW and of
software engineering research on component-based sys-
tems. There are also new challenges to be addressed when
using component technology to design tailorable group-
ware systems. By definition, tailoring is carried out after
system installation and initialization by users who are not
necessarily professional programmers. To allow composi-
tion after initialization or even during run-time, new
concepts regarding the component model and the tailoring
platform had to be developed. Since users are the key
actors, appropriate tailoring interfaces and an application-
oriented decomposition of the software functionality are
needed. Moreover, technological mechanisms to support
the sharing of tailored artifacts among the users need to be
developed. In summary, we need

! to provide an architecture for re-designing software
applications during use,

! to provide end-user-oriented concepts and interfaces, and
! to provide a strong congruency between architectural

and interface concepts.

We developed the FREEVOLVE architecture to address
these requirements.

3.3. FREEVOLVE component platform and architecture

To address the issues described above, we present results
from research conducted at the University of Bonn and
more recently at the University of Siegen. The design of
tailorable groupware has been an important aspect of our
work for almost a decade (e.g. Wulf, 1994, 2001;
Stiemerling, 2000; Kahler, 2001a; Pipek, 2003; Won,
2003; Mørch et al., 2004; Wulf et al., 2005; Pipek and
Kahler, 2006). Beyond component-based tailorability, we
have also experimented with alternative approaches, such
as rule-based architectures and the extension of off-the-
shelf products. With regard to the latter, we will limit our
presentation to those results applicable in the context of
component-based approaches.
As a technical foundation, Won (1998), Hinken (1999),

and Stiemerling (2000) have developed the FLEXIBEANS

component model and the FREEVOLVE tailoring platform.3

Both were influenced by current technologies in software
engineering, especially the JAVABEANS component model
and its run-time environment BeanBox.4 However, due to
the specific requirements of component-based tailorability

ARTICLE IN PRESS

3In earlier versions, the FREEVOLVE platform was called EVOLVE (cf.
Stiemerling et al., 1999). The source code is available under GPL at:
www.freevolve.org.

4The component model of JAVABEANS and the source code of the
BEANBOX are publicly available from SUN and served as a base for early
implementations.

V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–22 5

http://www.freevolve.org

for distributed systems, we had to refine the component
model and to develop a distributed run-time and tailoring
environment.

3.3.1. Traceability and intelligibility of component systems
Our first goal was to allow for a general intelligibility of

component systems, more specifically, for an appropriate
end-user-oriented traceability and visibility of current
parameters within and of bindings between components.
The work on the FLEXIBEANS model related to the
requirement to achieve a high congruency between the
architectural and the interface level.

In general, the atomic FLEXIBEANS components are
implemented in Java, stored in binary format as Java class
files, and packaged, if necessary, with other resources as
JAR-files. We distinguish between the component and its
instance. Every component can be instantiated in different
compositions by different users at the same time. Each
instance then has its own state. Like JAVABEANS, the
interaction between components is event-based. The state
of an instance of a component can only change if the
instance possesses the control flow, or through interaction
with a component that is in possession of the control flow.
The composition of the components determines which
instances of components can interact (Stiemerling, 1998).
In our approach, tailoring on the level of component
composition happens by means of connectable ports. To
allow tailorability at run-time, atomic and abstract
(compound) components, as well as their event ports have
to be visualized at the user interface.

The JAVABEANS component model is based on typed
events. Thus, events of the same type (e.g. button click
event) are always received on the same port. Incoming
events have to be analyzed in the receiving component, e.g.
by parsing the event’s source or by evaluating additional
information that is sent together with the event. This
approach makes it difficult for users to understand the
different state transitions resulting from events of different
sources (e.g. click events from two different buttons). An
alternative strategy would be to use dynamically generated
adapter objects in order to distinguish between different
event sources (e.g. click buttons). Such an adapter object
would forward different events of the same type (e.g.
different button click events) to different handling methods
depending on the event source. Both strategies hide part of
the real components’ interaction. An appropriate under-
standing of these strategies is essential for enabling the user
to compose components appropriately. Therefore, the
FLEXIBEANS component model has been developed to allow
named ports, which are distinguishable according to types
and names. Connections between components are only
valid if the port’s type and name match. Well-selected
names of ports support an appropriate understanding of a
component’s semantics and its role within the entire
assembly. Ports of the same name could have different
polarity in the sense that they could either emit or receive a
certain type of event.

3.3.2. Composition techniques
In traditional software engineering approaches, compo-

nents are only visible at design time, and composing is done
by means of a programming language or by a visual builder
at design time. Since these approaches do not aim to allow
any change of the component structure at run-time, it is lost
after compilation. If the reconfiguration of components
during run-time is supposed to be supported, the first
challenge would be the design of not only a language that
describes the composition of atomic components, but also
the design of concepts to maintain these representations
during run-time. As part of the FREEVOLVE concept, the
CAT5 component language was not only developed to deal
with these issues, but also to describe compositions of atomic
components into complex hierarchical structures. A CAT
file, or in the distributed setting a set of CAT files (see Fig. 2),
describes such a composition.
The CAT language supports hierarchically nested

component structures to allow different levels of tailoring
complexity. It is possible to build and store complex
components by composing a set of atomic (or complex)
components. From the user’s point of view, there are two
advantages: (a) the necessary number of abstract compo-
nents to build the final application is lower than the
number of atomic components would be and (b) their
design can be more oriented towards specific application
domains. Therefore, the necessary composition activities
have a lower level of tailoring complexity than the
composition activities at the atomic component level. The
CAT language allows an arbitrary depth of nesting.

3.3.3. Distributed tailoring platform
Our focus in this contribution is to address the support of

end-user interaction and ignore any software-technological
difficulties we had to face during the development of our
approach. These difficulties, in particular with regard to the
implementation of the distributed features of our concepts
(including the implementation of the dynamic reconfiguration
of component networks), are extensively covered by Stiemer-
ling and Cremers (1998) and Stiemerling et al. (1999a, b).
Here, we only give a brief introduction to our basic concepts.
The FREEVOLVE platform allows tailoring distributed applica-
tions with a tailoring environment/component editor em-
bedded in a client–server architecture (cf. Fig. 2).
At the start, the tailorable application is stored

persistently on the server. The atomic components are
stored in JAR-files, while the current component structure
is in a set of CAT files and remote bind files (DCAT files).6

The user management provides the appropriate CAT and

ARTICLE IN PRESS

5The syntax of the CAT (Component Architecture for Tailoring) is
described in Stiemerling (1997). It draws on concepts already developed in
port-based configuration languages such as DARWIN (cf. Magee et al.,
1995) and OLAN (cf. Bellissard et al., 1996).

6To allow tailoring of client and server independently, we use three CAT
files to describe one application. Two CAT files are needed to describe
respectively the client and the server configuration of the components. The
third description file, called DCAT file, describes the remote interaction

V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–226

DCAT files for each user who is starting her instance of the
application. To support collaborative tailoring, every
composition of the component can be shared with other
users. The implementation does not allow run-time
reconfiguration of the server-side composition.

During the start-up of an application, the CAT files on
the server are being analyzed. All relevant components are
represented at the server side. When user A logs in and
starts the client of the tailorable application, the client
connects to the FREEVOLVE server. The server then
authenticates the user and sends the necessary components
to the client. The client locally instantiates the atomic
components and connects them according to the composi-
tion described in the associated CAT file. If the server
application is not yet started, it will then be instantiated in
the same way. Finally, client and server are connected
according to the DCAT information.

The CAT files for the client’s sides are stored on a central
server that allows different users to run the same client by
applying the same CAT file. Therefore, changes on the
client side are transmitted to the server, stored persistently,
and propagated to those active client machines that use the
same client. With this type of distribution architecture,
typical synchronization problems may occur and the
propagation of tailoring activities to other users may lead

to inconsistent system states in the FREEVOLVE platform. A
specific protocol has been developed to recover a com-
pletely consistent version of the application in case of a
breakdown (Stiemerling et al., 2000).
This architecture provides a well-organized structure of

component-based CSCW applications even for a multi-user
setting. It allows tailoring during the applications run-time,
and it prepares for a higher level of congruency at the
interface level.

4. Interface level: component visualization

There is a large body of work regarding the ‘ergonomics’
of programming, mainly in the field of Visual Program-
ming (e.g. Shu, 1988; Myers, 1990; Ambler and Leopold,
1998; Pane et al., 2001). While many approaches aim to
support the professional programmer (e.g. by aiming at
visualizing the whole program and all its facets) there is
also some work supporting less experienced programmers.
The idea is to just visualize in an appropriate way what is
necessary.
Repenning et al. (2000) constructed a simulation system

where collaborative agents can be programmed by end
users, offering a visual programming language which
allows changes in the behavior of single agents. The
interaction between the agents remains hidden and cannot
be tailored, limiting the flexibility of possible applications.
The approach did not aimed at providing a universal highly
tailorable infrastructure, e.g. the programming language

ARTICLE IN PRESS

a_component SearchEngine {
providedresult s Result List;
subcomponentbuttonSearch ControlButt on;
subcomponentLW Lin kworksConnectiv ity ;
subcomponent Documentname Namefie ld;
bind Documentname.out LW.specs;
bindbuttonSearch.out LW.controlport;
bind LW.results results ;

a_component SearchEngine {
providedresult s Result List;
subcomponentbuttonSearch ControlButt on;
subcomponentLW Lin kworksConnectiv ity ;
subcomponent Documentname Namefie ld;
bind Documentname.out LW.specs;
bindbuttonSearch.out LW.controlport;
bind LW.results results ;

Available components

CAT

Files
Atomic components

...
Tailoring operations

Laufende A pplikation Laufende A pplikation

Specifcation of the Applicationin (CAT)

....

.... ..
,... --.
....
,.,, .,,,
....

.

.
, ... --.
.
, .,, .,,,
.

..

..
,. ..- -.
..
,. ,,. ,,,
..

Run-Time Environment (Server)

Run-Time Environment (Client)

Control

and

Management

(Instantiate, Bind,

Remove Binding,

Delete Component,

Save etc.)

APITailoring

Environment

DCATCAT (Client) CAT (Server)

Fig. 2. FREEVOLVE platform.

(footnote continued)
between client and server components. Thus, every client application can
be tailored without affecting the common server.

V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–22 7

Visual AgenTalk needs to be re-designed for each field of
application in order to be understood more easily.

The Regis system (Magee et al., 1995) allows the
distribution of configuration management. Its two-dimen-
sional (2D) environment implements many important
techniques from Visual Programming. However, the
underlying component model is based on the idea that a
composition consists of only a few components, making it
less scalable.

Some of these tools use multiple views to focus on
different aspects of the application. For instance, in most
programming environments, there is a code and a graphical
user interface (GUI) view. In the field of end user
tailorability, Mørch and Mehandjiev (2000) use this
technique: their system ECHOES allows tailoring applica-
tions that can be seen and changed in different representa-
tion views.

In addition, other research inHCI aimed at supporting
the learning of the functionality of single user applications.
These concepts are based on either structuring, describing,
experimenting or exemplifying the use of certain functions
(e.g. Carroll and Carrithers, 1984; Carroll, 1987; Howes
and Paynes, 1990; Yang, 1990; Paul, 1994). However, these
approaches remain quite limited in the scope of their ability
to communicate, a function’s meaning because they usually
just cover one specific aspect. Within the discussion on
tailorability starting with Henderson and Kyng (1991),
technology is not regarded to be the sole element of
support for a user to understanding. On contrary, the
complete socio-technical system, in which the user, the
technology, and the other users are involved, is considered
to be central.

A number of issues have been addressed in the HCI
research described above: appropriate visualizing, flexibil-
ity, scalability, multiple views, and socio-technical con-
cerns. In our research, we made use of this research (e.g.
Visual Programming, as well as the socio-technical issues
that contributed to our ideas at the collaborative level,
which both will be discussed later), but in perceiving
tailoring also as a user-driven process, we found the
dynamic aspects of tailoring interaction of particular
importance. It is not only the visual experience that is a
key factor for allowing end users to familiarize themselves
easily with the manipulation of IT artifacts. Very
important is the way users are supported in the process
of detecting and experimenting safely with the configura-
tion options that allow them to learn about and grow into
the role of a ‘casual programmer’.

We have collected the experiences of our research as well
as those of other researches dealing with the field of
CSCW, and were able to refine four main challenges that
cover different phases of the process of tailoring:

! consistent anchoring: the options to tailor a software
artifact need to be indicated consistently;

! intelligibility (of composition structures): the current
composition structure of a tailorable software artifact

(component aggregate) has to be represented intelligibly,
especially in the dynamic aspects;

! effect visualization: the effects of tailoring activities have
to be easily perceivable for the user; and

! fault tolerance: the tailoring environment should be fault
tolerant in the sense that it indicates incorrect activities
to the users and proposes advice.

We have developed several concepts and prototypes in
dealing with these challenges. First of all, we begin with the
concept of Direct Activation, which was developed to
provide consistent anchors for tailoring functionality in
component-based applications. Secondly, we describe
issues of congruencies between different aspects and layers
on which we can draw to provide users with an easy access
to tailoring functionality. Thirdly, we suggest ‘Exploration
Environments’ to increase the users’ understanding of the
dynamic aspects of the applications that they tailor.
Finally, we address the issue of ‘‘Fault Tolerance’’ by
suggesting additional constraint-based advisory structures
to assure users that important dependencies within the
component compositions will be guaranteed.
The work on the visualizations within the tailoring

interface of FREEVOLVE was carried out by Won (1998,
2003), Hallenberger (2000), and Krüger (2003). Additional
features to support tailoring activities were realized by
Engelskirchen (2000), Golombek (2000), Wulf (2001),
Krings (2002) and Won (2003).

4.1. Easy access to tailoring functions: Direct Activation

An empirical study of users of word processors indicated
that finding the appropriate tailoring functions is a
substantial barrier which either prevents tailoring, or adds
significantly to its costs (Wulf and Golombek, 2001a).
Discussing our findings in the context of earlier works (see
Mackay, 1990; Page et al., 1996), we identified two rather
distinct occasions where users want to tailor an applica-
tion: (a) when a new version of the application is
introduced and (b) when the users’ current task requires
a modified functionality. The users need different patterns
of support in order to find tailoring functions in both of
these situations.
For tailoring a new version of an application, providing

a survey of the given tailoring functions would be
appropriate to help tackle the finding problem. The users
are informed about the scope of the new version’s
tailorability. When the users’ current task requires a
modified functionality, a context specific representation
of the tailoring functions’ access points would be appro-
priate. In such a situation, the user typically knows which
aspects of the application he wants to modify, since the
current version of the function hinders his work.
In order to tackle the second case, we have developed the

concept of Direct Activation. Tailoring is needed when
users perceive a state transition that does not lead to the
intended effects following a function’s execution. In this

ARTICLE IN PRESS
V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–228

case, users are typically aware of the function’s anchor at
the user interface. Therefore, the anchor of the tailoring
function should be designed so that it ‘relates’ to the
function to be tailored.

In our concept, three ways of ‘relating’ tailoring and its
uses are distinguished. Firstly, by ‘visual proximity to the
use anchor’, the visual representation of the anchor of
the tailoring functions is placed closely to the anchor of the
tailorable function. For example, in the case of certain
parameters, the tailorable function has to be specified
during activation, and visual proximity can be reached by
displaying the anchor of the tailoring functions next to the
one for specifying the parameters (e.g. in the same window).
If the tailorable function is executed without any further
specification from the menu or via an icon (a ‘use anchor’),
the anchor for the tailoring function will then be placed
next to the one of the tailorable function. However, this
does not work for what we call ‘triggered functions’
(functions that are not activated directly by the user, but
initiated by some state changes in the application, e.g. email
filters, cf. Oppermann and Simm, 1994). Thus, secondly, we
suggest a ‘visual proximity to the effect anchor’ for those
cases that do not provide a visible use anchor, although
they cause perceivable effects at the interface.

A third, totally different approach within our frame-
work, completely forgoes visualizations of anchors, instead
it provides a ‘consistent mode change’ to the tailoring
interfaces of functions. Mørch (1997) gives an example of a
consistent mode to activate a tailoring function. In his
system, a user can access different levels of tailoring
functions by activating the function and pressing either the
‘‘option’’, or ‘‘shift’’, or ‘‘control’’ button. Restricted to
specific functions, the Microsoft context menu supplies
another example of how to design a ‘consistent mode
change’ in order to activate tailoring functions. Whenever
the display of a screen object may be tailored, a specific
mouse operation allows accessing the tailoring function.

To evaluate the effectiveness of Direct Activation in
finding tailoring functions, we have implemented proto-
types and carried out an evaluation study. The results of
this study show that Direct Activation eases tailoring
activities (see Wulf and Golombek, 2001a).

4.2. Visual tailoring environments: exploiting congruencies

The general design of the tailoring interfaces in
component-based systems aims at allowing ‘natural’
tailoring the way Pane and Myers (2006) postulated it.
The goal is to create a visual tailoring environment where
users are able to match between the interface at run-time
and design time. Therefore, the users are supported to
identify the properties that they want to tailor.
The components’ characteristics and the composition

metaphor inherent in the concept make a graphical/visual
tailoring interface appear appropriate for changing the
component structure. Within the graphical tailoring
environment, the component structure of the software
artifact is displayed as follows: components are visualized
as boxes, ports are indicated as connectors at their surface,
and the binding between two ports is represented by a line
between these surface elements. Tailoring activities consist
of adding or deleting (instances of) components and
rewiring their interaction. During the course of our work,
we have developed 2D (Stiemerling and Cremers, 1998;
Won, 1998; Wulf, 2000) and 3D versions (Stiemerling et al.,
2001) of the visual tailoring environment. In the following,
we ignored the issue of parameterization of single
components, which we have realized in all three of the
tailoring environments by means of Direct Activation.
While we heavily made use of well-known ideas from

Visual Programming, our main consideration was more
directed at finding ‘plausible congruencies’ that would
make it easier for end users to achieve their tailoring goals.
We begin with an example (cf. Fig. 3).
The first tailorable application we developed was a

search tool for a groupware application. The tailorable
aspects were restricted to the client side, while the
groupware application itself had a client–server architec-
ture. Fig. 3 shows the 2D graphical environment to tailor
the search tool.
The general approach is fairly straightforward: the users

could compose variations of the search tool window, which
consisted basically of different graphical elements in order
to specify search queries and others in order to display
search results. To allow these tailoring activities, the search

ARTICLE IN PRESS

Fig. 3. 2D graphical tailoring environment.

V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–22 9

tool consisted of six types of atomic components. Four of
these component types were visible during use (inquiry
elements, start button, display elements) while the other
two were visible only while tailoring (the search engine and
the switches to direct search results towards specific
graphical output elements). We made use of the categor-
izations of ports to represent them at the tailoring
interface. The polarity of ports helped to distinguish
between a component’s input and output port: empty
circles indicated input ports, filled circles indicated output
ports. To support users in wiring the components appro-
priately, ports of the same type and name are given the
same color, so that the users are directed to fit input and
output ports by means of identical colors. Wired compo-
nents were represented by using a connecting line between
their corresponding ports. Abstract components were
represented by a white frame around the atomic (or
abstract) components they contained. If a power user has
already designed several different abstract input and
output components, other users can make their first steps
in constructing their personal search tool by combining
two abstract components.

Although the application resembles many other ap-
proaches to Visual Programming, it is important for us
to clarify that we consciously aim to exploit ‘plausible
congruencies’. The first congruency is between the
metaphor world of components and their visualization
(Component-Metaphor Congruency). Component-based
systems provide a specific perspective of the way software
systems are built and how they can be manipulated.
Attached to this perspective is a certain language (compo-
nents, ports, connectors, etc.) and a set of related concepts.
From our point of view, the art of providing tailoring
interfaces is to maintain this congruency, while a certain
domain-orientedness (e.g. by using appropriate naming
schemes) is simultaneously provided. This allows users to
understand tailoring options easily while still getting in
touch with the concepts of the software architecture world
they are working with.

The second congruency we exploited in order to support
end users is the previously mentioned Architecture-Inter-
face Congruency. It is important, from our perspective,
that visualizations reflect the actual workings of the
component architecture. Therefore, in the FLEXIBEANS

concept, we did not only provide typed and directed, but
also named ports to make the information and control flow
among components as intelligible as possible. The above
example also shows that ‘gray boxing’ is an important
consideration. However, from this approach other pro-
blems, such as still having to differentiate the scope of
tailoring activities referring either to the client or to the
server side, remain unsolved.

The third important congruency is the Tailoring-Use
Congruency. The idea is that the tailoring interface user
should still be able to recognize the familiar users’ interface
with the corresponding visual anchors of functionalities.
However, this proved to be quite difficult, and led us to

conduct experiments with different two- and three-dimen-
sional (2D and 3D) interfaces. The 2D approach presented
so far has the advantage of enabling users to match directly
between the run-time (use) environment and the tailoring
environment. When a user changes into the tailoring mode,
the visible components of the interface stay at the same
place on the screen, while the invisible components, the
ports and the connecting lines between them, are added to
the display. The components that are invisible during run-
time (search engine, switches for the results) are displayed
at the same locations where they have been placed during
the prior tailoring activities. However, a strict adherence to
the third congruency has the consequence that screen
locations, where invisible components are placed during
tailoring, could not be used by visible components during
use. This approach does not make efficient use of the screen
space as long as larger parts of the invisible functionality
stay ‘‘behind’’ the user interface.
To overcome these problems, a 3D graphical tailoring

interface (cf. Fig. 4) has been developed. Spatial navigation
(‘flying through the model’) can be used to explore
applications. Components are represented as 3D boxes
(with the components’ names above them), which are
located on a virtual plane. The ports are represented as
rings around the components in order to facilitate
connections from all directions. Like in the 2D case, the
color indicates the type and name of the port. The polarity
is expressed by the intensity of the color. The input port is
represented by darker shading, while the output port is
indicated by lighter shading. Connections between compo-
nents are symbolized by tube-like objects linking the
corresponding rings.
Like all other components, abstract components are

represented by 3D boxes. However, the box’s surface that
encapsulates the containing components of lower hierarch-
ical level becomes more transparent as the user navigates
closer to it until the visual barrier completely disappears.
Yet, the rings representing the ports of the abstract
component remain visible. The user can now navigate or
manipulate the inner-component structure. In our current
implementation, atomic components remain black boxes
even if the user navigates into their neighborhood. A gray-
box strategy would allow navigation into an atomic
component and inspection of the parts of the code that
can be modified.
The distinction between client and server side is

represented by a spatial arrangement which places the
server in the center (represented by its tailorable compo-
nent structure), while the different clients (represented by
their tailorable component structure) are located in a semi-
circle around the server.
In order to ease the transition from use into tailoring

mode, we offer a reference between the visible components
at the user’s interface and the invisible components
‘‘behind’’ the screen. If a user changes into the tailoring
mode, the actual client’s GUI window will be projected
into the 3D world. Light beams will then connect the

ARTICLE IN PRESS
V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–2210

specific elements of the GUI interface to the client’s
component structure. When the user starts tailoring and
enters the 3D world, he will be located in front of the GUI
projection and will see the GUI on his regular interface.
However, the semi-transparent plan also allows observing
the component structure on the highest level of abstraction.
Following the beams of light, he can navigate through the
plane into the 3D space and explore or change the
component structure.

With the development of the 2D and 3D solutions, it
becomes obvious that the congruencies we want to establish
may conflict with one another. In our implementations, it
also becomes understandable that the Architecture-Interface
Congruency is more effective at supporting the 3D environ-
ment, while the Tailoring-Use Congruency is better suited in
the 2D environment. In user studies, we identified several
problems with the 3D tailoring environment. Users had
difficulties to navigate. Even after several trials, the time for
reaching certain points in the architecture was considered too
long. Moreover, the spatial arrangements led to situations
where users might feel unable to navigate, because all
relevant information (e.g. including the representation of the
use mode) is visible on the screen. Our empirical evaluations
also indicate that users have more problems in understanding
the functionality and the use of invisible components (more
abstract to them) than those of the visible ones (this applied
to the 2D and the 3D interfaces).

The latter result leads to the development of a hybrid
solution between 2D and 3D, which aims at addressing
both congruencies separately. In the third prototype, we

use separate windows to split the tailoring mode into three
2D vizualizations. One window maps the Tailoring-Use
Congruency by visualizing only visible components (and
making only those available for tailoring; cf. Fig. 5),
whereas the other two map the Architecture-Interface
Congruency by providing a 2D visualization of the
component bindings on the client side (cf. Fig. 6,
Composition Editor), and a tree view of the complete
hierarchy of components (including server components; cf.
Fig. 7, Component Explorer). All three windows are
synchronized in order to make sure that they all represent
the current state of composition.
For easier orientation and navigation, the synchroniza-

tion feature also covers the highlighting and marking of
components. Highlighting a component in one view leads to
the component being highlighted in the other views
simultaneously. The distinction of different views en-
courages users to use them for different tailoring tasks:
resizing and/or re-arranging the components at the interface
level is done in the editor for the visible components, and
architectural modifications are done with the use of other
editors. Changes of component parameters are possible in
all three editors via context menus. In this approach, the
notion of access control in component modification can
also be applied to be able to deny access to the server-side
components within the Component Explorer.
So far, we have only carried out a very preliminary

evaluation study (see Krüger, 2003), indicating that even
the least experienced users are able to work with all three
different views provided by this tailoring environment.

ARTICLE IN PRESS

Fig. 4. 3D graphical tailoring interface displaying a client’s tailorable component structure.

V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–22 11

4.3. Fault management: checking the integrity of component
compositions

Empirical studies indicate that the fear of destroying an
application is one of the major obstacles in tailoring
activities (Mackay, 1990). We have to consider the case
that users may make mistakes when (re-)composing
component structures. While these errors, on the one
hand, threaten the functioning of the application (and even

worse, the applications of others if the users work in a
shared distributed environment), they are also regarded as
opportunities for learning (cf. Frese et al., 1991). Although
the differentiation of the ports (cf. FLEXIBEANS concept,
typing, naming, directedness) already helps in preventing
certain misconnections among components, technical
mechanisms that actively detect errors in the composition
of components (cf. Won, 2000, 2003) were additionally
developed.

ARTICLE IN PRESS

Fig. 5. View of visual components.

Fig. 6. View of the Composition Editor: end users can explore the network of sub-components, some details about ports and methods and their
connection are displayed.

V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–2212

Such mechanisms for integrity checks are supposed to
control the validity of the composition, to indicate
the source of an error, give hints, and to correct the
composition. The rule-based integrity check that
we present here consists of two different concepts:
(a) constraints and actions and (b) an analysis of the event
flow.

Rule-based integrity checks are well-known in data base
management systems (Silberschatz et al., 2001). Rules are
terms in first order logic that can be evaluated automati-
cally. This technique can be used to add external conditions
to the use of components. By restricting the use of a
component, these constraints describe the ‘‘right use’’ of
them. For instance, if we have a set of GUI components,
we can formulate a constraint like ‘‘all interface compo-
nents have to have the same look and feel’’. If a user tailors
an application (i.e. adds a new component) this condition
can be checked.

The integrity constraints of all components are stored
externally. Thus, they can be changed over time according
to the users’ or the organization’s requirements. This
separation may be useful in case standard components are
added to the component framework. Parameters can be
restricted with regard to the domain in which the
component should be used. For instance, we introduce a
watch component. This component is designed to work all
over the world in order to support all time zones. Our
domain in this case might be a regional organization set in
Western Europe. Consequently, only one time zone is
needed, and in this case, external constraints can ensure the
time to be set to MET only.

Constraints include action descriptions. Action descrip-
tions extend from providing simple text information, which
may help the user to correct a wrong input, to describing
an automated execution of solutions. Those action
descriptions may cover all tailoring operations as discussed
in our description of the architectural layer. Nevertheless,
our goal here is not to compose applications automatically,
but to ease the learning and understanding of tailoring

activities. All the system interactions mentioned so far are
represented at the user interface as they happen. As soon as
a constraint fires, the corresponding component will be
marked and the user may get detailed information by
selecting it.
A second technical mechanism is the check of event flow

integrity. As mentioned before, the FLEXIBEANS component
model allows event-based component interaction, in which
events are passed between independent components. In
most cases, events that are created and passed to another
component can be regarded as important information.
Therefore, an event that is produced, but not consumed,
may indicate a problem or an unsolved issue. Here is a
short example, explaining such an integrity rule which
might not be sufficient: Fig. 8(a) shows a three-component-
composition consisting of a search engine (left), a filter
component (middle) and an output window (right). If we
mark consumers and producers in our constraint set, we
can only ensure that the search engine and the output
window are connected (in some way). However, we want to
ensure that each created important event is also consumed
in the right way. Thus, the event flow needs additional
checking.
In order to implement the concept of event flow

integrity, we classify the ports as either essential or optional:
essential ports have to be connected to other components,
whereas optional ports may not be used. For instance, the
output component of the search tool, which displays the
found objects’ names, has two ports: one input port that is
used for receiving search results from the search engine,
and one output port that sends additional information
(type, attributes) of selected search results to other
components. In order to support users in building
functional applications, the input port is classified as
‘‘essential’’, since it would be senseless to compose a search
tool whose input window is not connected to any search
engine. The output port here is classified as ‘‘optional’’, as
one can use an output window without applying any
additional information of the search results.
In order to deal with these dependencies, we have

developed a ‘regular providers/consumers’ concept. For
checking an event flow, all essential event ports have to be
connected to ‘regular providers’ or ‘regular consumers’.
For instance, we may compose a search tool by connecting
a search engine to a filter component (that filters some of
the search results) connected to the output component.
Here, the search engine has an essential output port. The
filter component only passes events but it is not a consumer
whereas the output component is a consumer of the search

ARTICLE IN PRESS

Fig. 7. View of the Component Explorer: offers a different view on a
component, providing more detail.

Fig. 8. Example of an Event flow.

V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–22 13

result, and has an essential port that is finally connected.
As a result, we have to differentiate the ports according to
their function within a composition (producer, consumer,
pass-though) and their need to be connected (essential,
optional).

This information is described in external XML files
which can only be changed by expert users. The integrity
check is carried out by translating the composition into a
Petri-net and then conducting an analysis (van der Aalst
et al., 1997; Won, 2003). In case the event flow analysis
detects an error, the user is provided with corresponding
information within his tailoring environment. Components
and their ports are marked if they are essential but not
connected correctly.

4.4. Spaces for learning: Exploration Environments

To study tailoring empirically, Mackay (1990) as well as
Oppermann and Simm (1994) stated the importance of
explorative activities. We have developed the concept of
Exploration Environments as an additional feature to
support users in experimenting with tailorable groupware
(Wulf, 2000; Wulf and Golombek, 2001b). An Exploration
Environment allows simulating the execution of a tailor-
able groupware function by means of a specific system
mode. This permits the learner’s own user interface and the
effects on other users’ interfaces to be simulated on the
output device. If a function is executed in the Exploration
Environment, the effects of its execution on the simulated
user interfaces will be similar to the effects the ‘‘real’’
function’s execution has on the ‘‘real’’ user interfaces. In
most groupware systems, users are only able to see parts of
the system (their personal desktop, documents they are
allowed to view, etc.). Exploration Environments have two
main advantages: firstly, a user can interchange between
different user interfaces. By executing a function in the
Exploration Environment and switching between the
simulations of her own and the other users’ interfaces, a
user can perceive how a newly tailored function works.
Secondly, all data and documents of the Exploration
Environment are accessible to the user. Thus, if a
document cannot be found with a tailored version of a
search tool, the user will know that he has to change the
configuration of the search tool as he can see that a
corresponding file exists in the Exploration Environment.

While research in HCI has already led to different
exploration mechanisms (e.g. undo function, freezing
point, or experimental data), the distributed character of
groupware poses new challenges. Users are often unable to
understand the way groupware functions work, since they
cannot perceive the effects of the functions’ execution at
the other users’ interface (e.g. the access rights granted to
somebody else cannot be perceived by the owner). Only in
cases where an application follows the WYSIWIS (What
You See Is What I See) principle in a very strict manner
(c.f. Johansen, 1988), users can perceive the effects of a
function’s execution on the interface of other users. In field

studies (Wulf and Golombek, 2001b), we have learned that
users try to overcome these problems by testing the results
of their changes collaboratively. For instance, if users try to
understand the current access right settings, they will ask
their colleagues to try to open specific documents. This
kind of exploration is often disturbing and difficult to do,
in particular if the users are not collocated. To understand
how tailorable functions are configured becomes even
harder when their execution is not directly visible at the
user interface. This type of changes in the configuration
cannot be recognized directly. For instance, changes to an
email filter can only be explored by sending a variety of
different emails and tracking the recipient’s mailbox.
We have built specific Exploration Environments for three

different tailorable groupware tools: an awareness service, a
search tool for groupware, and a highly flexible access
control for a shared workspace. To evaluate the effectiveness
of Exploration Environments in tailorable groupware, we
have carried out a field study and an experiment in a lab
setting. The results of these studies indicate that Exploration
Environments support tailoring activities in groupware (cf.
Wulf, 1999; Wulf and Golombek, 2001b). When designing
Exploration Environments, we cannot remain in the realm
of technology. To allow credible and realistic expeditions
into the possibilities of alternative technology configura-
tions, it is necessary to model at least parts of the
organizational system, e.g. users, departments, roles.

5. Collaborative tailoring

Component-based software engineering is based on the
assumption that software development can be organized
best in a collaborative and distributed manner. Component
repositories, together with monetary compensations for
those who offer their source code for reuse, are supposed to
render software development more efficient (see Szyperski,
2002). On the technical side, the issue is being addressed by
providing a certain level of encapsulation of functionality,
and by allowing an easy exchange of components.
Empirical studies on tailoring activities of end users have
also revealed a collaborative nature of tailoring (see Pipek
and Kahler, 2006). While monetary compensation does not
play an important role in these collaborations among users,
different patterns of cooperative activities have been found
among users who differ in their commitment to and
qualification for tailoring.
Regarding tailoring, we deal with two ideal types of social

design relationships: a relation between professional de-
signers and users, and a relation among users who cooperate
in the reconfiguration of the technology they use. In the
FREEVOLVE approach, we anticipate that a certain division of
labor would go with this distinction: on the level of the
atomic components, the code for users is provided by
professional developers, while on the level of the abstract
components, users cooperate by providing each other with
pre-integrated abstract components. Referring to the second
type of relationship, we experimented with the design of

ARTICLE IN PRESS
V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–2214

shared workspaces to exchange tailored artifacts among
users. Moreover, additional features may add significantly to
a component presentation for an intuitive reuse by others.

Engelskirchen (2000) and Wulf (2001) have developed a
shared workspace to exchange abstract components within
a groupware application: Höpfner (1998), Golombek
(2000), and Kahler (2001a) have developed a shared
repository to exchange tailored artifacts, such as document
templates or button bars, among users of a word processor.
Stevens (2002) has worked on metaphors that make visible
and invisible components more comprehensive to users.

Repositories in software engineering are expected to
contain components that could construct a wide variety of
different applications. The necessities of navigation, the
understanding of technological context, and choice of
appropriate components are part of the professional knowl-
edge of software engineers. Our experiences with end users
(Wulf, 1999; Kahler, 2001b; Stevens and Wulf, 2002)
revealed the need for a more application-oriented and user-
oriented approach in designing repositories for the exchange
of tailored artifacts. To allow a seamless transition between
use and tailoring activities, the shared repository needs to be
integrated into the tailoring environment and should be
activated directly with only those components that are
relevant to a certain tailoring context.

Repositories for tailored artifacts can be understood as
shared workspaces where compositions of components can
be exchanged. Shared workspaces have been discussed
extensively in CSCW research (e.g. Bentley et al., 1997). In
our case, however, shared workspace functionality needs to
be integrated in both the groupware application and the
additional features for making the components intelligible.
Their basic functionality consists of uploading and down-
loading functions for (compositions of) components.
Additional features allow specifying the visibility of
compositions and defining access rights for different
subgroups of users. Moreover, a notification service
informs users as soon as relevant tailored artifacts are
newly produced, modified, or applied. Such a service
contributes to the mutual awareness of distributed tailoring
activities, and may encourage the emergence of a tailoring
culture (cf. Carter and Henderson, 1990). Since direct
cooperation among users should also be supported, the
tailoring environment may provide a function to mail
tailored artifacts directly to specific users or user groups.

Summarizing, we have identified several design aspects
for collaborative tailoring tools that support users in
understanding the technology and its tailoring options as
well as their own tailoring activities. Now, we will discuss
the use of appropriate naming and classification schemes,
look at the necessity of annotations, and finally address
social aspects of Exploration Environments.

5.1. Naming and classification schemes for components

Users are typically confronted with a variety of different
atomic and abstract components. By offering a number of

atomic or abstract components, one has to provide
meaningful names for them, since these names are listed
at the interface. Due to limitations of screen space, the
users’ first choice is based on a very sparse visual
presentation of the listed items. Naming the components
in a meaningful way has turned out to be a key factor for
the efficiency of tailoring activities.
Naming may still be straightforward regarding atomic

components because they usually have only a limited
function that is easier describable in a name. However,
with abstract components in a shared repository, the
functionality becomes more complex. Therefore, users have
to agree on a shared vocabulary in describing tailored
functionality. Some issues can be resolved by providing
additional representations for invisible components, which
explain their functionality (cf. Wulf, 1999). It can also be
useful to work with a defined set of metaphors that is
related to the application field (cf. Stevens et al., 2006).
A classification system is essential in order to structure a

set of components. The classification of atomic compo-
nents can benefit again from the simplicity of their purpose.
For instance, in FREEVOLVE, we group them according to
their ports (names, types, input/output) based on the
assumption that their classification indicates the roles they
can play within the composition (cf. Wulf, 1999). Never-
theless, for classifying abstract components, there are many
plausible categories, e.g. technical aspects like the type of
ports they use, or the organizational unit of the author of a
component (used as an indicator for use/task similarities
covered in a set of components). However, the most
important aspect with regard to a naming and classification
scheme is to recognize its potential to evolve. Therefore, it
is important that names as well as classifications can
emerge and develop as the users find and improve a
common understanding.

5.2. Annotation of components

A field study indicated that users need additional
support in distinguishing components beyond naming
and classifying. Hence, we generated possibilities to
textually describe atomic and abstract components. In
order to describe atomic components, we have created a
hypertext-based help menu that shows text to briefly
explain the components’ functionality and added screen
shots when necessary.
Descriptions of abstract components have to be created

by the users themselves. Therefore, we have implemented an
annotation window that consists of the following text fields:
‘‘Name’’, ‘‘Creator,’’ ‘‘Origin’’, ‘‘Description’’, and ‘‘Re-
marks’’. Since textual documentation of design rationales
imposes an extra burden, it is often omitted (cf. Grudin,
1996). Thus, we tried to reduce the workload by providing
automatic support in creating descriptions wherever possi-
ble (cf. Wulf, 1999). For instance, the ‘‘Creator’’ field is
automatically generated by data taken from the user
administration. The ‘‘Origin’’ field contains a reference

ARTICLE IN PRESS
V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–22 15

when an abstract component is created by modifying one
already in existence. This reference is also automatically
created. The ‘‘Description’’ field clarifies the behavior of an
abstract component. If the component results from the
modification of an existing one, the explanation of the
original component is copied and put into italics, ready for
editing. The ‘‘Creator’’ field may indicate on the one hand
the quality of the abstract component. A composition
becomes more trustworthy if it is created by someone who
is an accepted expert within the community of users. On the
other hand, the efforts become visible to the group, which
leads to a higher degree of acceptance in many cases.
Moreover, it may increase the motivation for sharing
tailored artifacts as a service to a community of users.

5.3. Experimenting with components

Static descriptions already add a better understanding of
the functionality that components offer. Still, it is a
complex task to understand how a new component tailored
by other users interacts with other known components.
While the Exploration Environments described above
support experimenting with completely assembled func-
tionality, we have to find new approaches to support
experimenting with atomic or abstract components. In case
these modules do not cover an observable set of
functionality, they cannot be executed in an Exploration
Environment by themselves. Therefore, we have imple-
mented an option which allows the users to store the
‘‘missing parts’’ together with the corresponding atomic or
compound components. Together with the components
themselves, the ‘‘missing parts’’ should provide a char-
acteristic example for the component’s use when building
functionality. Those examples can then be executed in the
Exploration Environment (cf. Wulf, 1999).

6. Discussion

We have described concepts and prototypes that were
developed by our groups in order to provide tailoring
means to end users of different work contexts. While many
prototypes have been previously published in greater detail,
our overview allows us to take a step back and have a look
at the big picture.

The purposes of our research are twofold: we want to
enable end users to independently tailor their technological
infrastructure, and we want to allow them to do the
tailoring at run-time. When we started with the research
agenda, our choice of the component paradigm was
motivated by its resemblance to tailoring concepts that
were developed in the CSCW field. During the course of
our work, we have developed more than 15 prototypes and
have evaluated them with about 80 end users from 10
different organizations with various backgrounds, e.g.
German federal government, steel industry, consultancy
networks. The conceptual knowledge that was presented
emerged from this research.

As a general outcome of our research, we can comment
that the task of tailoring was more complex than we
originally thought. From our point of view, it is also more
complex than the task of (professional) programming. This
is due to the fact that tailoring is not mainly about product
development (which is often the guiding metaphor in
software engineering), but ‘infrastructuring’. Here, we take
Star and Bowkers’ (2002) notion, which defines an
infrastructure as something that ‘runs underneath’ other
structures, and is invisible, but becomes visible in the case
of a breakdown. Infrastructures are used by people who are
not experts in developing the infrastructure technologies.
They familiarize themselves with the technological con-
cepts driven by pure necessities of use. Users experience
breakdown situations (be it an actual technological break-
down or simply a perceived incongruency between the
expected and the delivered service of an application) which
force them to learn new aspects necessary to understand
and orchestrate technology. In this perspective, tailoring is
much more than just a simple configuration of tools. It is
an opportunity for reflection and learning about the (in-)
abilities of today’s technologies. ‘Infrastructuring’ tries to
cover theses activities (Pipek and Syrjänen, 2006). In
organizations, infrastructural problems usually are either
addressed by a more or less appropriate division of labor
(system administrators, IT departments, etc.) or left to the
initiative of individual users. Approaches to ‘infrastructur-
ing’ have to support the collaborations which result from
this practice. We believe that software is a completely new
type of infrastructural matter (compared to older infra-
structures such as power lines, railroad systems or water
pipes), since it may offer flexibility to support the activities
of ‘infrastructuring’. We should aim at allowing every user
to dig deeper into technological matters at a level
considered appropriate to him. Component-based tailor-
ability allows realizing such a required ‘gentle slope’ of
increasing complexity.

6.1. Exploiting congruencies

Star and Bowker (2002) explicitly referred to the historic
dimensions of infrastructures, and described how new
infrastructures emerge from older ones, and how concepts
are being transferred between old and new infrastructures.
They point out that for the individuals involved, historical
aspects such as earlier experiences and existing expertise
count. We described that in the form of ‘congruencies’ the
architecture and the visualization of a component-based
system should strive to maintain. Our choice of using a
component-based approach was proved to be successful,
since we were able to achieve these congruencies up to a
certain level. The Component-Metaphor Congruency
addressed the issue that the use of the component
metaphor in programming is related to the notion of an,
almost haptic, experience in building complex systems from
simple building blocks that users may know from other
construction domains. To achieve this congruency, it was

ARTICLE IN PRESS
V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–2216

necessary to combine a strong encapsulation of all concepts
that describe a component with clear visual indicators of
how components fit and work together.

Related to the Architecture-Interface Congruency is a
decision that underlies all our efforts: To provide a
‘truthful’ representation of the architecture at the interface,
clear architectural concepts that can simply represent the
user’s interface (e.g. the port description we provided in the
FLEXIBEANS concept) are needed. We accept that for a large
number of individual problems, it would be easier for users
to have an interface specifically designed for certain
tailoring tasks. However, the research on the development
of infrastructures leads us to believe that such a design
could prevent users from building a deeper knowledge of
the true complexity of the system, and may in fact hinder
the understanding of future breakdown situations. We
believe that for bridging the gap between component-based
structures and the intuitive understanding of users in an
application field, an additional metaphor framework on
top of the component network could be the solution. But
even in this case it should be possible to trace issues into
deeper levels of the application’s software architecture to
further familiarize with the new infrastructure. Our
experiences also confirm that it is not necessarily a good
idea to maintain a strong separation between the computa-
tional and the interface level of applications (cf. Kuutti and
Bannon, 1993).

The Use-Tailoring Congruency helps users to enter the
world of tailoring and to understand specific tailoring
options. In general, usage knowledge is less complex and
acquired earlier than tailoring knowledge. The congruency
helps the tailoring user to draw on earlier use experiences.

The three congruencies address the end user as a ‘casual
programmer’, and allow him to interact with the infra-
structure in a more powerful way.

6.2. Employing a holistic approach

We also like to emphasize here that the completeness of
the research (in terms of addressing the architectural level,
the interface level, and the cooperation level) was not our
intention in the beginning, but it later proved to be essential
during our evaluations. We simply cannot escape the
embeddedness of users in their work context and their
focus on actual tasks (where tailoring is more a side task).
Therefore, we believe, scenarios that focus on providing
help in just one specific situation do not cover the
complexity of the problem. Apart from an incident-oriented
support, we also have to address a strategic level of users
having to familiarize with technologies. There, support on
the individual as well as on the social level is needed.

So far, we maintain an understanding of tailoring as a
task to reconfigure or redesign software tools. Henderson
and Kyng (1991) already went beyond this understanding
by employing a perspective, where tailoring is not only the
design of tool configurations, but also the design of a tool’s
usages. There is usually a certain set of tasks, roles, use

scenarios, and conventions associated with the technologi-
cal reconfiguration of tools. Under the term of ‘appropria-
tion work’, we address the activities around the making
sense of technologies in an application field (Pipek, 2005).
Beyond learning about the functionality of an application,
it also deals with social activities related to the design of an
appropriate usage of the application. An approach aware
of the infrastructural character of software artifacts has to
provide support for these activities. In the FREEVOLVE

approach, we address that issue by combining component
repositories with Exploration Environments. Pipek (2005)
suggested the use of ‘use discourse environments’ to
provide a platform for these negotiations. In general, it is
an interesting goal to support users as a ‘virtual community
of technology practice’.
We want to close our discussion by addressing open ends

in technology-oriented research on tailorability. While our
results stem from long-term research activities covering the
design and implementation of technological innovations as
well as their evaluation in laboratory-settings and field
studies, many issues still remain open. We do not know yet
which type of tailorable applications is best suited for
component-based approaches compared to other software
technical paradigms such as rule-based or agent-based
ones. From a technological perspective, our experiences
indicate that applications or parts of them whose control
flow can be presented in a rather linear order seem to be
well suited for component-based tailorability.
Methods that allow finding appropriate modularizations of

an application into atomic components are another issue for
further investigation (cf. Stiemerling et al., 1997; Stiemerling,
2000; Stevens and Wulf, 2002). The modularization must also
be meaningful to users (cf. Stevens et al., 2006). For different
classes of applications, we need to find meaningful metaphors
to communicate the meaning of individual components. The
CoCoWare platform (Slagter et al., 2001) allows users to
compose their own component-based groupware applica-
tions. In this platform, each component is in itself a small
application, e.g. a session control or a conference manager
component. From the software-technological perspective,
their work is closely related to ours but with a main difference
in the granularity of the components. While in CoCoWare
components represent whole applications, FLEXIBEANS are
conceptualized to be more fine-grained. On the one hand this
allows more flexibility; on the other hand, tailoring becomes
more complex.
In extending our approach, one can also imagine

introducing additional levels of tailoring complexity by
gray or even glass-boxing atomic components. Thus,
selected aspects or even the whole code of an atomic
component could become modifiable by certain users. With
regard to the user interface for tailoring, one has to
investigate whether a single interaction paradigm is
sufficient for component-based tailorability, or whether
the interaction paradigm of the tailorable application needs
to be taken into account for the design of the interface of
the tailoring environment (cf. Nardi, 1993).

ARTICLE IN PRESS
V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–22 17

At the interface level, we aimed to increase the
transparency regarding technology structure and possible
technology modifications (gray boxing, component connec-
tors), and regarding the effects of modifications (by means of
Exploration Environments and visualizations of certain
additional component dependencies). A dynamic well
known in the field of CSCW is that additional transparency
always favors a loss of privacy, e.g. the more accurate an
Exploration Environment reflects the actual state of a
groupware application within an organization, the more
information about ongoing usages and even about users
may become available. The perceived value of user interface
concepts we suggested will not only depend on the adding of
transparency, but also on controlling transparency.

Regarding the support of collaborative tailoring activities,
we need to think of additional features that support users in
selecting appropriate atomic or abstract components out of a
larger set of components. Ye (2001) has developed a
recommender system which supports software developers
to share and reuse source codes via a repository. We believe
that similar functionalities will be valuable for collaborative
tailoring activities. Moreover, we will be able to learn from
the open source movement and the discussion on social
capital to design shared repositories in an appropriate
manner (cf. Fischer et al., 2004; Huysman and Wulf, 2004).

6.3. Beyond component-based systems

The final point we want to make concerns software
development paradigms. One important issue is the
development of appropriate tailoring platforms for peer-
to-peer architectures and mobile systems (cf. Alda and
Cremers, 2004). Our approach may fall short since we use a
client-server architecture. However, peer-to-peer architec-
tures face additional challenges regarding synchronization
and availability.

We started with a set of ideas and requirements that
originated in CSCW research and combined them with
issues of software reuse in software engineering. It leads us
to new requirements for component-based systems that we
addressed with the FLEXIBEANS wrappers, the FREEVOLVE

platform, a set of ‘congruencies’ guiding the user interface
design and additional ideas for collaboration support. The
great effort we had to make to produce acceptable solutions
for our requirements is due to the fact that the necessity to
design for ‘redesign during use’ is not an important
consideration in software engineering. Several problems
we addressed could be more substantially resolved by
integrating end user concerns in the development of
standards and programming languages. With the emergence
of software-oriented architectures (SOA), new promises and
challenges are bound to occur. Our experiences have shown
how difficult it was to provide an infrastructure that
addresses the two main goals of end user orientation and
run-time tailorability within component networks. SOA
promise a higher level of flexibility since the concept is not
related to an operating system or programming language

(as component-based systems are). However, the current
practice of SOA restricts itself to a use by programmers
rather than by end users. There was a similar situation when
we started our work with components. To some extent,
SOA resemble aspects of component-based architectures:
services are independent of each other, stateless, self-
describing and provide standardized interfaces (Brown et
al., 2002; Bieberstein et al., 2006). However, services
provide additionally a process perspective on applications,
not just an object or component perspective (Jones and
Mike, 2005). The promise of a new level of flexibility is
already partly being undermined by an inflationary use of
the term ‘service-orientation’ (Doernhoefer, 2006). Stan-
dardization efforts are counteracted in practice by the
emergence of different service worlds (e.g. SOAP web
services vs. OSGi architecture). It is an interesting research
issue to investigate how the concepts developed for
component-based systems translate into the SOA world.
Taking into account the emergence of SOA as a new

flexibilization technology that again needs to be bended to
fit the user needs, the question arises whether it is an
appropriate research strategy to ‘abuse’ technologies that
have been developed to address the issue of software reuse.
As a result of our work, the research challenges of use-time
redesign by the end user became obvious. It seems to be
possible to make modern flexibilization technologies better
manageable by end users.
However, it is not only the technological implementations

that need to be improved in order to make things easier for
‘casual programmers’. The implementations for software
reuse in professional software development need to focus on
different dynamics (e.g. interoperability, backward compat-
ibility). Moreover, even simpler software applications rely on
underlying layers of software (e.g. operating systems, inter-
face frameworks, communication protocols) and result in a
system in which it is inherently difficult to navigate, interpret
its visible effects and manipulate applications. If software
technology is that complex, the question needs to be asked
whether we can really bend flexibilization technologies such
as SOA to a level at which end users can reliably act with
them. To deal with these challenges, we believe that beyond
technology user communities need to develop around
software applications (cf. Stevens and Wiedenhöfer, 2006).
We may need to fundamentally shift our usage traditions of
information technology and establish ‘tailoring’ and ‘pro-
gramming’ to become cultural techniques just as reading or
counting. If technology cannot become more intelligible,
users (communities) have to develop their abilities. Since
trends such as ubiquitous computing increase IT diffusion
into almost all aspects of our lives, tailoring as well as
programming skills should be developed as early as in
school.

7. Conclusions

We have presented our work on how the concept of
component-based tailorability can be made intelligible and

ARTICLE IN PRESS
V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–2218

manageable for end users. Due to the specific requirements
of users whose main interests are other than software
development, the requirements for the design of the user
interface are distinct from typical developer-oriented IDEs in
software engineering. We worked out a component-based
approach by evaluating our experiences with the FREEVOLVE

platform. In addition, we developed a number of prototypes
that covered important side issues. These issues covered
constraint-based integrity checks in order to help users to
detect tailoring errors, as well as the provision of Exploration
Environments, so they can familiarize themselves with the
dynamic aspects of tailored component networks.

We suggested a holistic approach to component-based
tailorability by addressing the architectural level as well as
the interface and the social/collaborative level. We
described how we used different ‘congruencies’ (Compo-
nent-Metaphor Congruency, Architecture-Interface Con-
gruency and Tailoring-Use Congruency) as guidelines to
provide a comprehensive tailoring environment comple-
mented with the interface concept of direct activation. We
discussed the role of these congruencies in the development
of three different tailoring interfaces. Furthermore, we
addressed the social level by providing shared repositories
of tailored components, and connecting them to Explora-
tion Environments.

Finally, we related our findings to the issue of developing
technology in an ‘infrastructure-aware’ way. It is necessary
to consider technology as an infrastructure for users, as
something that remains invisible until breakdown, in which
case it becomes critical to know. Such a perspective
promotes several notions for the support of ‘appropriation
work’, which users perform typically when making sense of
technologies. Perceiving groupware as an infrastructure
also means that the levels of qualification, interest, and
dedication will be different among users involved in
tailoring an application. They will also vary over time.
The infrastructure issue connects to earlier discussions
about the need of an emerging tailoring culture within the
field of application (cf. Carter and Henderson, 1990).

Along these lines of thought, we need to gather new
experiences on how to connect tailoring activities with
processes of organizational development and change (cf.
Wulf and Jarke, 2004). In order to improve flexibility and
efficiency of business processes, the exploitation of tailor-
ability needs to be integrated into the ongoing processes of
organizational changes. Therefore, we have developed the
framework of Integrated Organization and Technology
Development which connects tailorability with planned
processes of organizational and technological development
(cf. Wulf and Rohde, 1995; Rohde, 2007). This aspect
needs to be further investigated particularly regarding
emerging change processes and the role of tailorability in
groupware appropriation (cf. Orlikowski and Hofman,
1997; Andriessen et al., 2003; Dittrich et al., 2005; Pipek
et al., 2006).

Our research demonstrates that there is a quality of
software, offering new opportunities for the integration of

the traditionally separated spheres of ‘design’ and ‘use’ that
go far beyond the capabilities of products with a ‘real’
materiality. Software can be considered a new material
which carries with it the ability to change beyond the ideas
and intentions of the original designers. This material can
incorporate communication and collaboration channels,
which support its development and appropriation. Its
interfaces may melt well into existing technological and
social infrastructures. With its ubiquity, this material and
its products may well become the ‘boundary objects’ for
reconceptualizations of reality that reach beyond the
technological level. This notion opens up new horizons
for capturing and managing innovations, and for mediat-
ing developments on an organizational as well as societal
level. These horizons are yet to be explored.

Acknowledgements

Torsten Engelskirchen, Björn Golombek, Michael Hal-
lenberger, Ralf Hinken, Jörg-Guido Höpfner, Helge
Kahler, Markus Rohde, Gunnar Stevens, and Oliver
Stiemerling contributed greatly to different aspects of the
work presented here. The authors gratefully acknowledge
the support of the German Science Foundation (DFG) and
the German Ministry of Research and Education (BMBF).
BMBF has provided grants in the context of the ‘PoliTeam:
Workflows, Archives and Groupwork in Distributed
Organizations’ and the ‘EUDISMES: End User Develop-
ment in Small and Medium Enterprise Software Systems’
research projects. DFG funds the research projects ‘The
Design of Computer Systems by the User’ as part of the
DFG Research Centre ‘Media Upheavals’ (DFG-FK 615)
and the project cluster ‘Context-Aware Interaction in
Cooperative Knowledge Processes (Contici)’. The authors
would also like to thank the journal editor and three
anonymous reviewers for their constructive suggestions, as
well as Fred Kop for his detailed editorial comments.

References

Ackermann, D., Ulich, E., 1987. The chances of individualization in
human–computer interaction and its consequences. In: Frese, M.,
Ulich, E., Dzida, W. (Eds.), Psychological Issues of Human Computer
Interaction in the Work Place. North-Holland, Amsterdam,
pp. 131–146.

Alda, S., Cremers, A.B., 2004. Towards composition management for
peer-to-peer architectures. In: Proceedings of the Workshop Software
Composition (SC 2004), affiliated to the Seventh European Joint
Conference on Theory and Practice of Software (ETAPS 2004),
Barcelona, Spain.

Ambler, A., Leopold, J., 1998. Public Programming in a Web World.
Visual Languages. Nova Scotia, Canada.

Andriessen, J.H.E., Hettinga, M., Wulf, V. (Eds.), 2003. Special issue on
evolving use of groupware. Computer Supported Cooperative Work:
The Journal of Collaborative Computing (JCSCW), 12(4).

Bellissard, L., Atallah, S.B., Boyer, F., Riveill, M., 1996. Distributed
application configuration. Proceedings of the 16th International
Conference on Distributed Computing Systems. IEEE-Press, Hon-
gkonk, pp. 579–585.

ARTICLE IN PRESS
V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–22 19

Bentley, R., Dourish, P., 1995. Medium versus mechanism. supporting
collaboration through customisation. In: Marmolin, H., Sundblad, Y.,
Schmidt, K. (Eds.), Proceedings of the Fourth European Conference
on Computer Supported Cooperative Work—ECSCW ‘95, Kluwer,
pp. 133–148.

Bentley, R., Appelt, W., Busbach, U., Hinrichs, E., Kerr, D., Sikkel, K.,
Trevor, J., Woetzel, G., 1997. Basic support for cooperative work on
the world wide web. International Journal of Human Computer
Studies 46, 827–846.

Beringer, J., 2004. Reducing expertise tension. Communications of the
ACM 47 (9), 39–40.

Bieberstein, N., Bose, S., Fiammante, M., Jones, K., Shah, R., 2006.
Service-Oriented Architecture Compass. Pearson.

Blomberg, J., Giacomi, J., Mosher, A., Swenton-Wall, P., 1993.
Ethnographic field methods and their relation to design. In: Schuler,
D., Namioka, A. (Eds.), Participatory Design: Principles and Practices.
Lawrence Earlbaum Assoc., Hillsdale, NJ, pp. 123–156.

Brown, A.W., Johnston, S., Kelly, K., 2002. Large-scale, using service-
oriented architecture and component-based development to build web
service applications. Rational Software White Paper TP032.

Burton, R.R., Brown, J.S., Fischer, G., 1984. Skiing as a model of
instruction. In: Rogoff, B., Lave, J. (Eds.), Everyday Cognition: Its
Development in Social Context. Harvard University Press, Cambridge,
MA, pp. 139–150.

Carroll, J.M., 1987. Five gambits for the advisory interfaces dilemma.
In: Frese, M., Ulich, E., Dzida, W. (Eds.), Psychological Issues of
Human Computer Interaction in the Work Place, Amsterdam,
pp. 257–274.

Carroll, J.M., Carrithers, C., 1984. Training wheels in a user interface.
Communications of the ACM 27 (8), 800–806.

Carter, K., Henderson, A., 1990. Tailoring culture. In: Hellman, R.,
Ruohonen, M., Sorgard, P. (Eds.), Proceedings of the 13th IRIS,
Reports on Computer Science and Mathematics, No. 107, Abo
Akademi University, pp. 103–116.

Cortes, M., 1999. A coordination language for building collaborative
applications. Journal of Computer Supported Cooperative Work.

Dittrich, Y., Dourish, P., Mørch, A., Pipek, V., Stevens, G., Törpel, B.,
2005. Special issue on supporting appropriation work. International
Reports on Socio-Informatics (IRSI) (2:2), p. 84, /http://irsi.iisi.de/S.

Doernhoefer, M., 2006. Surfing the net for software engineering notes.
ACM SIGSOFT Software Engineering Notes, vol. 30, issue 6,
pp. 5–13, November 2005. ISSN:0163-5948.

Dourish, P., 1996. Open implementation and flexibility in CSCW toolkits.
Ph.D. Thesis, University College, London.

Engelskirchen, T., 2000. Exploration anpassbarer groupware. Master
Thesis, University of Bonn.

Fischer, G., Girgensohn, A., 1990. End-user modifiability in design
environments. In: Proceedings of the Conference on Computer Human
Interaction (CHI 090), 1–5 April 1990, Seattle, Washington. ACM-
Press, New York, pp. 183–191.

Fischer, G., Lemke, A.C., Rathke, C., 1987. From design to redesign. In:
International Conference on Software Engineering, Monterey, CA,
USA, pp. 369–376.

Fischer, G., Scharff, E., Ye, Y., 2004. Fostering social creativity by
increasing social capital. In: Huysman, M., Wulf, V. (Eds.), Social
Capital and Information Technology. MIT-Press, Cambridge, MA,
pp. 355–399.

Frese, M., Irmer, C., Prümper, J., 1991. Das Konzept Fehlermanagement:
Eine Strategie des Umgangs mit Handlungsfehlern in der Mensch-
Computer Interaktion (‘‘The concept of

’’
Fault Management’’:

A strategy of dealing with activity faults in Human–Computer-
Interactions’). In: Skarpelis, C. (Ed.), Software für die Arbeit von
morgen (Software for tomorrow’s work’). Springer, Berlin, pp. 241–252.

Golombek, B., 2000. Implementierung und Evaluation der Konzepte
‘‘Explorative Ausführbarkeit’’ und ‘‘Direkte Aktivierbarkeit’’ für
anpassbare Groupware (‘Implementation and evaluation of the
concepts of ‘‘explorative execution’’ and ‘‘direct activation’’ for
tailorable groupware’). Master Thesis, University of Bonn.

Grudin, J., 1996. Evaluating Opportunities for Design Capture. In:
Moran, J.P., Carroll, J.M. (Eds.), Design Rationale: Concepts,
Techniques and Use, p. Hillsdale.

Hallenberger, M., 2000. Programmierung einer interaktiven 3D-Schnitt-
stelle am Beispiel einer Anpassungsschnittstelle für komponenten-
basierte Anpassbarkeit (‘Implementation of an interactive 3D-interface
in the example of a tailoring interface for component-based
tailorability’). Master Thesis, University of Bonn.

Henderson, A., Kyng, M., 1991. There’s no place like home: continuing
design in use. In: Greenbaum, J., Kyng, M. (Eds.), Design At Work—
Cooperative Design of Computer Artefacts. Lawrence Erlbaum
Associates, Hillsdale, NJ, pp. 219–240.

Hinken, R., 1999. Verteilte Anpassbarkeit für Groupware—Eine Laufzeit
und Anpassungsplattform (‘Distributed tailoring of groupware—a
run-time and tailoring environment’). Master Thesis, University of
Bonn.

Höpfner, J.-G., 1998. Gemeinsame Anpassung von Einzelpatzanwendun-
gen (‘‘Collaborative tailorability of single user applications’’). Master
Thesis, University of Bonn.

Howes, A., Paynes, S.J., 1990. Supporting exploratory learning.
In: Proceedings of INTERACT’90, North-Holland, Amsterdam
1990, pp. 881–885.

Huysman, M., Wulf, V. (Eds.), 2004. Social Capital and Information
Technology. MIT Press, Cambridge, MA.

IBM, 1998. Visual Age for Java, Version 1.0.
ISO, 9241, 1999. Ergonomic Requirements for Office Work with Visual

Display Terminals (VDTs), Part 10: Dialogue Principles.
Johansen, R., 1988. Current user approaches to groupware. In: Johansen,

R. (Ed.), Groupware. Freepress, New York, pp. 12–44.
Jones, S., Mike, M., 2005. A methodology for service architectures.

OASIS Draft, /http://www.oasis-open.org/committees/download.
php/15071/A%20methodology%20for%20Service%20Architectures%
201%202%204%20-%20OASIS%20Contribution.pdfS, referenced in
January 2006.

Kahler, H., 2000. Methods and tools: constructive interaction and
collaborative work: introducing a method for testing collaborative
systems. Interactions 7 (3), 27–34.

Kahler, H., 2001a. Supporting collaborative tailoring. Ph.D. Thesis,
Roskilde University, Denmark, Roskilde.

Kahler, H., 2001b. More than WORDSs: collaborative tailoring of a word
processor. Journal on Universal Computer Science (j.ucs) 7 (9),
826–847.

Krings, M., 2002. Erkennung semantischer Fehler in komponentenba-
sierten Architekturen (‘The recognition of semantic errors in compo-
nent-based architectures’). Master Thesis, University of Bonn.

Krüger, M., 2003. Semantische Integritätsprüfung für die Anpassung
von Komponenten-Kompositionen (‘Semantic integrity checking
for tailoring component aggregates’). Master Thesis, University of
Bonn.

Kuutti, K., Bannon, L., 1993. Searching for Unity Among Diversity:
Exploring the Interface Concept, interchi’93. ACM Press, pp. 263–268.

Lewis, C., 1982. Using the ‘‘Thinking-aloud’’ method in cognitive
interface design. Research Report RC 9265. T.J. Watson Research
Center, Yorktown Heights, NY.

Lieberman, H., Paternó, F., Wulf, V. (Eds.) 2006. End User Development.
Springer, London.

Mackay, W.E., 1990. Users and customizable software: a co-adaptive
phenomenon. Ph.D. Thesis, MIT, Boston, MA.

MacLean, A., Carter, K., Lövstrand, L., Moran, T., 1990. User-tailorable
systems: Pressing the issue with buttons. In: Proceedings of the
Conference on Computer Human Interaction (CHI ‘90), 1–5 April,
Seattle (Washington). ACM Press, New York, pp. 175–182.

Magee, J., Dulay, N., Eisenbach, S., Kramer, J., 1995. Specifying
distributed software architectures. In: Proceedings of Fifth European
Software Engineering Conference, Barcelona.

Malone, T.W., Lai, K.-Y., Fry, C., 1992. Experiments with oval: a
radically tailorable tool for cooperative work. In: Proceedings of
CSCW, Toronto, Canada. ACM Press, pp. 289–297.

ARTICLE IN PRESS
V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–2220

http://www.oasis-open.org/committees/download.php/15071/A%20methodology%20for%20Service%20Architectures%201%202%204%20-%20OASIS%20Contribution.pdf
http://irsi.iisi.de/
http://www.oasis-open.org/committees/download.php/15071/A%20methodology%20for%20Service%20Architectures%201%202%204%20-%20OASIS%20Contribution.pdf
http://www.oasis-open.org/committees/download.php/15071/A%20methodology%20for%20Service%20Architectures%201%202%204%20-%20OASIS%20Contribution.pdf

McIlroy, D., 1968. Mass-produced software components. In: Proceedings
of Conference on Software Engineering, Garmisch-Partenkirchen (D),
North Atlantic Treaty Organization (NATO).

Microsoft, 1996. Visual Basic, Version 4.0.
Mørch, A.I., 1997. Method and tools for tailoring of object-oriented

applications: an evolving artifacts approach. Ph.D. Thesis, Department
of Computer Science, University of Oslo, Research Report 241, Oslo.

Mørch, A.I., Mehandjiev, N.D., 2000. Tailoring as collaboration: the
mediating role of multiple representations and application units.
Computer Supported Cooperative Work 9 (1), 75–100.

Mørch, A.I., Stevens, G., Won, M., Klann, M., Dittrich, Y., Wulf, V.,
2004. Component-based technologies for end user development.
Communications of the ACM 47 (9), 59–62.

Myers, B.A., 1990. Taxonomies of Visual Programming and program
visualization. Journal of Visual Languages and Computing 1, 97–123.

Nardi, B.A., 1993. A Small Matter of Programming—Perspectives on
End-User Computing. MIT Press, Cambridge.

Nielsen, J., 1993. Usability Engineering. Academic Press, Boston, MA.
Oberquelle, H., 1993. Anpassbarkeit von Groupware als Basis für die

dynamische Gestaltung von computergestützter Gruppenarbeit (‘Tai-
lorability of Groupware as a basis for a dynamic design of Computer-
Supported Cooperative Work’). In: Konradt, U., Drisis, L. (Eds.),
Benutzeroberflächen in der teilautonomen Arbeit (User Interfaces in
Semi-Autonomous Work). Köln, pp. 37–54.

Oberquelle, H., 1994. Situationsbedingte und benutzerorientierte Anpass-
barkeit von Groupware (Situational and user-oriented tailorability of
Groupware), In: Hartmann, A., Herrmann, Th., Rohde, M., Wulf, V.
(Eds.), Menschengerechte Groupware. Stuttgart, pp. 31–50.

Oppermann, R., Simm, H., 1994. Adaptability: user-initiated individua-
lization. In: Oppermann, R. (Ed.), Adaptive User Support—
Ergonomic Design of Manually and Automatically Adaptable
Software. LEA, Hillsdale, NJ.

Orlikowski, W.J., Hofman, J.D., 1997. An improvisational model for
change management: the case of groupware technologies. Sloan
Management Review (Winter 1997), 11–21.

Page, S., Johnsgard, T., Albert, U., Allen, C., 1996. User customization of a
Word Processor. In: Proceedings of CHI ‘96, 13–18 April, pp. 340–346.

Pane, J.F., Myers, B.A., 2006. More natural programming languages and
environments. In: Lieberman, H., Paternó, F., Wulf, V. (Eds.), End
User Development. Kluwer, Dordrecht, pp. 31–50.

Pane, J.F., Myers, B.A., Ratanamahatana, C.A., 2001. Studying the
language and structure in non-programmers’ solutions to program-
ming problems. International Journal of Human–Computer Studies 54
(2), 237–264.

Paul, H., 1994. Exploratives Agieren (‘‘Explorative Agency’’). Peter Lang,
Frankfurt.

Pipek, V., 2003. An integrated design environment for collaborative
tailoring. In: Dosch, W., Lee, R.Y. (Eds.), ACIS International
Conference on Software Engineering, Artificial Intelligence, Network-
ing and Parallel/Distributed Computing (SNPD’03). ACIS, Lübeck,
Germany, pp. 430–438.

Pipek, V., 2005. From tailoring to appropriation support: negotiating
groupware usage. In: Faculty of Science, Department of Information
Processing Science (ACTA UNIVERSITATIS OULUENSIS A 430),
University of Oulu, Oulu, Finland.

Pipek, V., Kahler, H., 2006. Supporting collaborative tailoring. In:
Lieberman, H., Paternó, F., Wulf, V. (Eds.), End User Development.
Kluwer, Dordrecht.

Pipek, V., Syrjänen, A.-L., 2006. Infrastructuring as capturing in-situ
design. In: Proceedings of 7th Mediterranean Conference on Informa-
tion Systems. Association of Information Systems, Venice, Italy.
Online at /http://www.aisworld.org/S.

Pipek, V., Rosson, M.B., Stevens, G., Wulf, V., 2006. Supporting the
appropriation of ICT—end-user development in civil societies. Journal
of Community Informatics (2:2).

Ravichandran, T., Rothenberger, M.A., 2003. Software reuse strategies
and component markets. Communications of the ACM 46 (8),
109–114.

Repenning, A., Ioannidou, A., Zola, J., 2000. AgentSheets: end-user
programmable simulations. Journal of Artificial Societies and Social
Simulation 3 (3).

Robertson, T., 1998. Shoppers and tailors: participative practices in small
Australian design companies. Computer Supported Cooperative Work
(CSCW) 7 (3–4), 205–221.

Rohde, M., 2007. Integrated Organization and Technology Development
(OTD) and the Impact of Socio-Cultural Concepts—A CSCW
Perspective, Datalogiske skrifter. University of Roskilde, Roskilde,
Denmark.

Schmidt, K., 1991. Riding a Tiger or Computer Supported Cooperative
Work. In: Bannon, L., Robinson, M., Schmidt, K. (Eds.), Proceedings
ECSCW ‘91, Kluwer, Dordrecht, pp. 1–16.

Shu, N.C., 1988. Visual Programming. Van Nostrand Reinhold Co.,
New York, NY.

Silberschatz, A., Korth, H., Sudarshan, S., 2001. Database System
Concepts. McGraw-Hill, Osborne.

Slagter, R., Biemans, M., Ter Hofte, G.H., 2001. Evolution in use of
groupware: facilitating tailoring to the extreme. In: Borges, M., Haake,
J., Hoppe, U. (Eds.), Proceedings of the Seventh International
Workshop on Groupware (CRIWG 2001), 6–8 September 2001,
Darmstadt, Germany.

Star, S.L., Bowker, G.C., 2002. How to infrastructure. In: Lievrouw, L.A.,
Livingstone, S. (Eds.), Handbook of New Media—Social Shaping
and Consequences of ICTs. Sage Publication, London, UK,
pp. 151–162.

Steven, G., 2002. Komponentenbasierte Anpassbarkeit—FlexiBeans zur
Realisierung einer erweiterten Zugriffskontrolle (‘Component-based
tailorability—using flexibeans to implement an extended access control
system’). Master Thesis, University of Bonn.

Stevens, G., Wiedenhöfer, T., 2006. CHIC—a pluggable solution for
community help in context. In: Mørch, A.I., Morgan, K., Bratteteig,
T., Ghosh, G., Svanaes, D. (Eds.), Proceedings of the Fourth Nordic
Conference on Human-Computer Interaction (NordiCHI 2006), Oslo,
Norway, 14–18 October 2006, pp. 212–221.

Stevens, G., Wulf, V., 2002. A new dimension in access control: studying
maintenance engineering across organizational boundaries. In: Pro-
ceedings of ACM Conference on Computer Supported Cooperative
Work (CSCW 2002). ACM Press, New York, pp. 196–205.

Stevens, G., Quaisser, G., Klann, M., 2006. Modulizing software for
tailorability—an industrial case study. In: Lieberman, H., Paternó, F.,
Wulf, V. (Eds.), End User Development. Kluwer, Dordrecht,
pp. 269–294.

Stiemerling, O., 1997. CAT: component architecture for tailorability.
Working Paper, Department of Computer Science, University of
Bonn.

Stiemerling, O., 1998. FLEXIBEANS specification V 2.0. Working Paper,
Department of Computer Science, University of Bonn.

Stiemerling, O., 2000. Component-based tailorability. Ph.D. Thesis,
Department of Computer Science, University of Bonn, Bonn.
Available from: /http://www.freevolve.de/Dissertation.pdfS.

Stiemerling, O., Cremers, A.B., 1998. Tailorable component architectures
for CSCW-systems. In: Tyrell, A.M. (Ed.), Proceedings of the Sixth
Euromicro Workshop on Parallel and Distributed Processing. IEEE-
Press, pp. 302–308.

Stiemerling, O., Hinken, R., Cremers, A.B., 1999a. The EVOLVE tailoring
platform: supporting the evolution of component-based groupware.
In: Proceedings of EDOC’99. IEEE Press, Mannheim, 27–30
September 1999, pp. 106–115.

Stiemerling, O., Hinken, R., Cremers, A.B., 1999b. Distributed compo-
nent-based tailorability of CSCW applications. In: Proceedings of
ISDS’99, Tokio, Japan. IEEE-Press, pp. 345–352.

Stiemerling, O., Kahler, H., Wulf, V., 1997. How to make software
softer—designing tailorable applications. In Proceedings of Second
Conference on the Design of Interactive Systems, Amsterdam (NL).
ACM Press, pp. 365–376.

Stiemerling, O., Won, M., Wulf, V., 2000. Zugriffskontrolle in Group-
ware—Ein nutzerorientierter Ansatz (Access control in Groupware—a

ARTICLE IN PRESS
V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–22 21

http://www.freevolve.de/Dissertation.pdf
http://www.aisworld.org/

user-centered approach). In: WIRTSCHAFTSINFORMATIK, 42.
Jg., Nr. 4, 2000, pp. 318–328.

Stiemerling, O., Hallenberger, M., Cremers A.B., 2001. 3D interface for
the administration of component-bases, distributed systems. In:
Proceedings of Fifth International Symposium on Autonomous
Decentralized Systems, 26–28 March 2001, Dallas, TX. IEEE Press,
pp. 119–126.

Szyperski, C., 2002. Component Software: Beyond Object Oriented
Programming, second ed. Addison-Wesley, London.

Teege, G., 2000. Users as composers: parts and features as a basis for
tailorability in CSCW systems, CSCW. Kluwer Academic Publishers,
pp. 101–122.

van der Aalst, W.D.H., Verbeek, H.M.W., 1997. A Petri-Net-based tool to
analyze workflows. In: Proceedings of Petri Nets in System Engineer-
ing (PNSE’97), Universität Hamburg, Hamburg, 1997, pp. 78–90.

Wang, W., Haake, J.M., 2000. Tailoring Groupware: The Cooperative
Hypermedia Approach. International Journal of Computer-Supported
Cooperative Work (9:1).

Won, M., 1998. Komponentenbasierte Anpassbarkeit—Anwendung auf
ein Suchtool für Groupware (‘Component-based tailorability and Ist
application on a groupware searching tool’). Master Thesis, University
of Bonn.

Won, M., 2000. Checking integrity of component-based architectures.
CSCW 2000 Philadelphia, USA, Workshop on Component-Based
Groupware.

Won, M., 2003. Supporting end-user development of component-based
software by checking semantic integrity. In: ASERC Workshop on
Software Testing, 19.2.2003, Banff, Canada.

Won, M., Stiemerling, O., Wulf, V., 2006. Component-based approaches
to tailorable systems. In: Lieberman, H., Paternó, F., Wulf, V. (Eds.),
End User Development. Springer, London, pp. 127–153.

Wulf, V., 1994. AnpaXbarkeit im ProzeX evolutionärer Systementwicklung
(‘Tailorability Within the Process of Evolutionary System Develop-
ment’). GMD-Spiegel, vol. 24, 3/94, pp. 41–46.

Wulf, V., 1999. Let’s see your Search-Tool!—collaborative use of tailored
artifacts in groupware. In: Proceedings of GROUP ’99. ACM Press,
New York, 1999, pp. 50–60.

Wulf, V., 2000. Exploration environments: supporting users to learn
groupware functions. Interacting with Computers 13 (2), 265–299.

Wulf, V., 2001. Zur anpassbaren Gestaltung von Groupware: Anforder-
ungen, Konzepte, Implementierungen und Evaluationen (‘On the
design of tailorable Groupware: Requirements, Concepts, Implementa-
tions and Evaluations’), GMD Research Series, Nr. 10/2001, St.
Augustin, 2001 (and: Habilitation Thesis University of Hamburg 2000).

Wulf, V., Golombek, B., 2001a. Direct activation: a concept to encourage
tailoring activities. Behavior and Information Technology 20 (4), 249–263.

Wulf, V., Golombek, B., 2001b. Exploration environments—concept and
empirical evaluation. In: Proceedings of GROUP 2001. ACM Press,
New York, pp. 107–116.

Wulf, V., Jarke, M., 2004. The economics of end-user development.
Communications of the ACM 47 (9), 41–42.

Wulf, V., Rohde, M., 1995. Towards an integrated organization and
technology development. In: Proceedings of the Symposium on
Designing Interactive Systems, 23–25 October 1995, Ann Arbor
(Michigan). ACM Press, New York, pp. 55–64.

Wulf, V., Stiemerling, O., Pfeifer, A., 1999. Tailoring groupware for
different scopes of validity. Behaviour and Information Technology 18
(3), 199–212.

Wulf, V., Kahler, H., Stiemerling, O., Won, M., 2005. Tailoring by
integration of domain-specific components: the case of a document
search tool. Behaviour and Information Technology (BIT) 24 (4),
317–333.

Yang, Y., 1990. Current approaches and new guidelines for undo-support
design. In: Proceedings of INTERACT’90. North-Holland, Amster-
dam, pp. 543–548.

Ye, Y., 2001. Supporting component-based software development with
active component repository systems. Ph.D. Dissertation, Department
of Computer Science, University of Colorado at Boulder, Boulder.

ARTICLE IN PRESS
V. Wulf et al. / Int. J. Human-Computer Studies 66 (2008) 1–2222

	Component-based tailorability: Enabling highly flexible software applications
	Introduction
	A framework to study tailorability
	Architectural level: component-based systems
	Basic concepts of component-based systems
	CSCW research on component-based tailorability
	Freevolve component platform and architecture
	Traceability and intelligibility of component systems
	Composition techniques
	Distributed tailoring platform

	Interface level: component visualization
	Easy access to tailoring functions: Direct Activation
	Visual tailoring environments: exploiting congruencies
	Fault management: checking the integrity of component compositions
	Spaces for learning: Exploration Environments

	Collaborative tailoring
	Naming and classification schemes for components
	Annotation of components
	Experimenting with components

	Discussion
	Exploiting congruencies
	Employing a holistic approach
	Beyond component-based systems

	Conclusions
	Acknowledgements
	References

